Loading…
Precipitation Enhancement Experiments in Catchment Areas of Dams: Evaluation of Water Resource Augmentation and Economic Benefits
This study calculated the augmentation of water resources that can be achieved through precipitation enhancement and the ensuing economic benefits by conducting precipitation enhancement experiments using atmospheric aircraft in the catchment areas of 21 multipurpose dams in Korea. The maximum numbe...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2020-11, Vol.12 (22), p.3730 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study calculated the augmentation of water resources that can be achieved through precipitation enhancement and the ensuing economic benefits by conducting precipitation enhancement experiments using atmospheric aircraft in the catchment areas of 21 multipurpose dams in Korea. The maximum number of precipitation enhancement experiments to be carried out was estimated based on the frequency of occurrence of seedable clouds near each dam, using geostationary satellite data. The maximum quantity of water that can be obtained was calculated considering the mean precipitation enhancement and probability of success, as determined from the results of experiments conducted in South Korea during 2018–2019. The effective area of seeding was assumed 300 km2. In addition, the amount of hydroelectric power generation possible was determined from the quantity of water thus calculated. In conclusion, it was established that an approximate increase of 12.89 million m3 (90% confidence interval: 7.83–17.95 million m3) of water, and 4.79 (2.91–6.68) million kWh of electric power generation will be possible through approximately 96 precipitation enhancement operations in a year at the catchment area of Seomjin River (SJ) dam which has a high frequency of occurrence of seedable clouds, a large drainage area, and a high net head. An economic benefit of approximately 1.01 (0.61–1.40) million USD can be anticipated, the benefit/cost ratio being 1.46 (0.89–2.04). |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs12223730 |