Loading…
Seasonal activities of the phyllosphere microbiome of perennial crops
Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass...
Saved in:
Published in: | Nature communications 2023-02, Vol.14 (1), p.1039-1039, Article 1039 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033 |
---|---|
cites | cdi_FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033 |
container_end_page | 1039 |
container_issue | 1 |
container_start_page | 1039 |
container_title | Nature communications |
container_volume | 14 |
creator | Howe, Adina Stopnisek, Nejc Dooley, Shane K. Yang, Fan Grady, Keara L. Shade, Ashley |
description | Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs). We find that classes represented by these MAGs (Actinomycetia, Alpha- and Gamma- Proteobacteria, and Bacteroidota) are active in the late season, and upregulate transcripts for short-chain dehydrogenase, molybdopterin oxidoreductase, and polyketide cyclase. Stress-associated pathways are expressed for most MAGs, suggesting engagement with the host environment. We also detect seasonally activated biosynthetic pathways for terpenes and various non-ribosomal peptide pathways that are poorly annotated. Our findings support that leaf-associated bacterial populations are seasonally dynamic and responsive to host cues.
Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, Howe et al. use metagenomics and metatranscriptomics to study changes in the leaf microbiome of perennial crops over two growing seasons. |
doi_str_mv | 10.1038/s41467-023-36515-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b694e0618ad14fabbf108e4cb3e707b9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b694e0618ad14fabbf108e4cb3e707b9</doaj_id><sourcerecordid>2780071222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033</originalsourceid><addsrcrecordid>eNp9ks1u1DAURiMEolXpC7BAEWxgEfBfYnuDVFWFVhqJBbC2bOd64lESBzsz0rx9naaUtgu8SXTvucdO_BXFW4w-Y0TFl8Qwa3iFCK1oU-O6Or4oTgliuMKc0JeP3k-K85R2KC8qsWDsdXFCG0EorslpcfUTdAqj7kttZ3_ws4dUBlfOHZRTd-z7kKYOIpSDtzEYHwZY2lMujaPPY7k6pTfFK6f7BOf3z7Pi97erX5fX1ebH95vLi01lG4TnyglAUhBHNG2bptYCm1Zw5pCmyGDd1Bwa6iQy3DlmQMiWC4olGEaAMkTpWXGzetugd2qKftDxqIL26q4Q4lbpOHvbgzKNZIAaLHSLmdPGOIwEMGsocMSNzK6vq2vamwFaC-Mcdf9E-rQz-k5tw0FJWSNGURa8XwUhzV4l62ewnQ3jCHZWWNYif3OGPq1Q98x9fbFRSw0xwvMih4X9eH-iGP7sIc1q8MlC3-sRwj4pwgVCHBNCMvrhGboL-5ivcaG4JIIQuQjJSuVLSimCezgBRmpJkVpTpHKK1F2K1DEPvXv8Xx5G_mYmA3QFUm6NW4j_9v6P9hYnZNGc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779282291</pqid></control><display><type>article</type><title>Seasonal activities of the phyllosphere microbiome of perennial crops</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Howe, Adina ; Stopnisek, Nejc ; Dooley, Shane K. ; Yang, Fan ; Grady, Keara L. ; Shade, Ashley</creator><creatorcontrib>Howe, Adina ; Stopnisek, Nejc ; Dooley, Shane K. ; Yang, Fan ; Grady, Keara L. ; Shade, Ashley ; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</creatorcontrib><description>Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs). We find that classes represented by these MAGs (Actinomycetia, Alpha- and Gamma- Proteobacteria, and Bacteroidota) are active in the late season, and upregulate transcripts for short-chain dehydrogenase, molybdopterin oxidoreductase, and polyketide cyclase. Stress-associated pathways are expressed for most MAGs, suggesting engagement with the host environment. We also detect seasonally activated biosynthetic pathways for terpenes and various non-ribosomal peptide pathways that are poorly annotated. Our findings support that leaf-associated bacterial populations are seasonally dynamic and responsive to host cues.
Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, Howe et al. use metagenomics and metatranscriptomics to study changes in the leaf microbiome of perennial crops over two growing seasons.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-36515-y</identifier><identifier>PMID: 36823152</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/22 ; 45/23 ; 45/90 ; 45/91 ; 631/158/855 ; 631/326/2565/2134 ; 631/326/2565/2142 ; 631/449/2676 ; Agricultural sciences ; Bacteria - genetics ; BASIC BIOLOGICAL SCIENCES ; Biodiversity and Ecology ; Crop production ; Crops ; Ecology, environment ; Environmental Sciences ; Genomes ; Growing season ; Humanities and Social Sciences ; Leaves ; Life Sciences ; Metagenome ; Metagenomics ; Microbial ecology ; Microbiology and Parasitology ; Microbiome ; Microbiomes ; Microbiota - genetics ; Microorganisms ; Molybdopterin ; multidisciplinary ; Oxidoreductase ; Panicum ; Panicum virgatum ; Perennial crops ; Phyllosphere ; Plant symbiosis ; Plants (botany) ; Productivity ; Resilience ; Science ; Science (multidisciplinary) ; Seasons ; Symbiosis ; Terpenes</subject><ispartof>Nature communications, 2023-02, Vol.14 (1), p.1039-1039, Article 1039</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033</citedby><cites>FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033</cites><orcidid>0000-0001-9742-6240 ; 0000-0002-7189-3067 ; 0000-0002-1532-6826 ; 0000000197426240 ; 0000000271893067 ; 0000000215326826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779282291/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779282291?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36823152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04277772$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1958601$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Howe, Adina</creatorcontrib><creatorcontrib>Stopnisek, Nejc</creatorcontrib><creatorcontrib>Dooley, Shane K.</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Grady, Keara L.</creatorcontrib><creatorcontrib>Shade, Ashley</creatorcontrib><creatorcontrib>Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</creatorcontrib><title>Seasonal activities of the phyllosphere microbiome of perennial crops</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs). We find that classes represented by these MAGs (Actinomycetia, Alpha- and Gamma- Proteobacteria, and Bacteroidota) are active in the late season, and upregulate transcripts for short-chain dehydrogenase, molybdopterin oxidoreductase, and polyketide cyclase. Stress-associated pathways are expressed for most MAGs, suggesting engagement with the host environment. We also detect seasonally activated biosynthetic pathways for terpenes and various non-ribosomal peptide pathways that are poorly annotated. Our findings support that leaf-associated bacterial populations are seasonally dynamic and responsive to host cues.
Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, Howe et al. use metagenomics and metatranscriptomics to study changes in the leaf microbiome of perennial crops over two growing seasons.</description><subject>45/22</subject><subject>45/23</subject><subject>45/90</subject><subject>45/91</subject><subject>631/158/855</subject><subject>631/326/2565/2134</subject><subject>631/326/2565/2142</subject><subject>631/449/2676</subject><subject>Agricultural sciences</subject><subject>Bacteria - genetics</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biodiversity and Ecology</subject><subject>Crop production</subject><subject>Crops</subject><subject>Ecology, environment</subject><subject>Environmental Sciences</subject><subject>Genomes</subject><subject>Growing season</subject><subject>Humanities and Social Sciences</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Metagenome</subject><subject>Metagenomics</subject><subject>Microbial ecology</subject><subject>Microbiology and Parasitology</subject><subject>Microbiome</subject><subject>Microbiomes</subject><subject>Microbiota - genetics</subject><subject>Microorganisms</subject><subject>Molybdopterin</subject><subject>multidisciplinary</subject><subject>Oxidoreductase</subject><subject>Panicum</subject><subject>Panicum virgatum</subject><subject>Perennial crops</subject><subject>Phyllosphere</subject><subject>Plant symbiosis</subject><subject>Plants (botany)</subject><subject>Productivity</subject><subject>Resilience</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seasons</subject><subject>Symbiosis</subject><subject>Terpenes</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAURiMEolXpC7BAEWxgEfBfYnuDVFWFVhqJBbC2bOd64lESBzsz0rx9naaUtgu8SXTvucdO_BXFW4w-Y0TFl8Qwa3iFCK1oU-O6Or4oTgliuMKc0JeP3k-K85R2KC8qsWDsdXFCG0EorslpcfUTdAqj7kttZ3_ws4dUBlfOHZRTd-z7kKYOIpSDtzEYHwZY2lMujaPPY7k6pTfFK6f7BOf3z7Pi97erX5fX1ebH95vLi01lG4TnyglAUhBHNG2bptYCm1Zw5pCmyGDd1Bwa6iQy3DlmQMiWC4olGEaAMkTpWXGzetugd2qKftDxqIL26q4Q4lbpOHvbgzKNZIAaLHSLmdPGOIwEMGsocMSNzK6vq2vamwFaC-Mcdf9E-rQz-k5tw0FJWSNGURa8XwUhzV4l62ewnQ3jCHZWWNYif3OGPq1Q98x9fbFRSw0xwvMih4X9eH-iGP7sIc1q8MlC3-sRwj4pwgVCHBNCMvrhGboL-5ivcaG4JIIQuQjJSuVLSimCezgBRmpJkVpTpHKK1F2K1DEPvXv8Xx5G_mYmA3QFUm6NW4j_9v6P9hYnZNGc</recordid><startdate>20230223</startdate><enddate>20230223</enddate><creator>Howe, Adina</creator><creator>Stopnisek, Nejc</creator><creator>Dooley, Shane K.</creator><creator>Yang, Fan</creator><creator>Grady, Keara L.</creator><creator>Shade, Ashley</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9742-6240</orcidid><orcidid>https://orcid.org/0000-0002-7189-3067</orcidid><orcidid>https://orcid.org/0000-0002-1532-6826</orcidid><orcidid>https://orcid.org/0000000197426240</orcidid><orcidid>https://orcid.org/0000000271893067</orcidid><orcidid>https://orcid.org/0000000215326826</orcidid></search><sort><creationdate>20230223</creationdate><title>Seasonal activities of the phyllosphere microbiome of perennial crops</title><author>Howe, Adina ; Stopnisek, Nejc ; Dooley, Shane K. ; Yang, Fan ; Grady, Keara L. ; Shade, Ashley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>45/22</topic><topic>45/23</topic><topic>45/90</topic><topic>45/91</topic><topic>631/158/855</topic><topic>631/326/2565/2134</topic><topic>631/326/2565/2142</topic><topic>631/449/2676</topic><topic>Agricultural sciences</topic><topic>Bacteria - genetics</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biodiversity and Ecology</topic><topic>Crop production</topic><topic>Crops</topic><topic>Ecology, environment</topic><topic>Environmental Sciences</topic><topic>Genomes</topic><topic>Growing season</topic><topic>Humanities and Social Sciences</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Metagenome</topic><topic>Metagenomics</topic><topic>Microbial ecology</topic><topic>Microbiology and Parasitology</topic><topic>Microbiome</topic><topic>Microbiomes</topic><topic>Microbiota - genetics</topic><topic>Microorganisms</topic><topic>Molybdopterin</topic><topic>multidisciplinary</topic><topic>Oxidoreductase</topic><topic>Panicum</topic><topic>Panicum virgatum</topic><topic>Perennial crops</topic><topic>Phyllosphere</topic><topic>Plant symbiosis</topic><topic>Plants (botany)</topic><topic>Productivity</topic><topic>Resilience</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seasons</topic><topic>Symbiosis</topic><topic>Terpenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howe, Adina</creatorcontrib><creatorcontrib>Stopnisek, Nejc</creatorcontrib><creatorcontrib>Dooley, Shane K.</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Grady, Keara L.</creatorcontrib><creatorcontrib>Shade, Ashley</creatorcontrib><creatorcontrib>Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howe, Adina</au><au>Stopnisek, Nejc</au><au>Dooley, Shane K.</au><au>Yang, Fan</au><au>Grady, Keara L.</au><au>Shade, Ashley</au><aucorp>Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal activities of the phyllosphere microbiome of perennial crops</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-02-23</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>1039</spage><epage>1039</epage><pages>1039-1039</pages><artnum>1039</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs). We find that classes represented by these MAGs (Actinomycetia, Alpha- and Gamma- Proteobacteria, and Bacteroidota) are active in the late season, and upregulate transcripts for short-chain dehydrogenase, molybdopterin oxidoreductase, and polyketide cyclase. Stress-associated pathways are expressed for most MAGs, suggesting engagement with the host environment. We also detect seasonally activated biosynthetic pathways for terpenes and various non-ribosomal peptide pathways that are poorly annotated. Our findings support that leaf-associated bacterial populations are seasonally dynamic and responsive to host cues.
Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, Howe et al. use metagenomics and metatranscriptomics to study changes in the leaf microbiome of perennial crops over two growing seasons.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36823152</pmid><doi>10.1038/s41467-023-36515-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9742-6240</orcidid><orcidid>https://orcid.org/0000-0002-7189-3067</orcidid><orcidid>https://orcid.org/0000-0002-1532-6826</orcidid><orcidid>https://orcid.org/0000000197426240</orcidid><orcidid>https://orcid.org/0000000271893067</orcidid><orcidid>https://orcid.org/0000000215326826</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-02, Vol.14 (1), p.1039-1039, Article 1039 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b694e0618ad14fabbf108e4cb3e707b9 |
source | Open Access: PubMed Central; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 45/22 45/23 45/90 45/91 631/158/855 631/326/2565/2134 631/326/2565/2142 631/449/2676 Agricultural sciences Bacteria - genetics BASIC BIOLOGICAL SCIENCES Biodiversity and Ecology Crop production Crops Ecology, environment Environmental Sciences Genomes Growing season Humanities and Social Sciences Leaves Life Sciences Metagenome Metagenomics Microbial ecology Microbiology and Parasitology Microbiome Microbiomes Microbiota - genetics Microorganisms Molybdopterin multidisciplinary Oxidoreductase Panicum Panicum virgatum Perennial crops Phyllosphere Plant symbiosis Plants (botany) Productivity Resilience Science Science (multidisciplinary) Seasons Symbiosis Terpenes |
title | Seasonal activities of the phyllosphere microbiome of perennial crops |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20activities%20of%20the%20phyllosphere%20microbiome%20of%20perennial%20crops&rft.jtitle=Nature%20communications&rft.au=Howe,%20Adina&rft.aucorp=Center%20for%20Advanced%20Bioenergy%20and%20Bioproducts%20Innovation%20(CABBI),%20Urbana,%20IL%20(United%20States)&rft.date=2023-02-23&rft.volume=14&rft.issue=1&rft.spage=1039&rft.epage=1039&rft.pages=1039-1039&rft.artnum=1039&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-36515-y&rft_dat=%3Cproquest_doaj_%3E2780071222%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779282291&rft_id=info:pmid/36823152&rfr_iscdi=true |