Loading…

Seasonal activities of the phyllosphere microbiome of perennial crops

Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-02, Vol.14 (1), p.1039-1039, Article 1039
Main Authors: Howe, Adina, Stopnisek, Nejc, Dooley, Shane K., Yang, Fan, Grady, Keara L., Shade, Ashley
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033
cites cdi_FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033
container_end_page 1039
container_issue 1
container_start_page 1039
container_title Nature communications
container_volume 14
creator Howe, Adina
Stopnisek, Nejc
Dooley, Shane K.
Yang, Fan
Grady, Keara L.
Shade, Ashley
description Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs). We find that classes represented by these MAGs (Actinomycetia, Alpha- and Gamma- Proteobacteria, and Bacteroidota) are active in the late season, and upregulate transcripts for short-chain dehydrogenase, molybdopterin oxidoreductase, and polyketide cyclase. Stress-associated pathways are expressed for most MAGs, suggesting engagement with the host environment. We also detect seasonally activated biosynthetic pathways for terpenes and various non-ribosomal peptide pathways that are poorly annotated. Our findings support that leaf-associated bacterial populations are seasonally dynamic and responsive to host cues. Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, Howe et al. use metagenomics and metatranscriptomics to study changes in the leaf microbiome of perennial crops over two growing seasons.
doi_str_mv 10.1038/s41467-023-36515-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b694e0618ad14fabbf108e4cb3e707b9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b694e0618ad14fabbf108e4cb3e707b9</doaj_id><sourcerecordid>2780071222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033</originalsourceid><addsrcrecordid>eNp9ks1u1DAURiMEolXpC7BAEWxgEfBfYnuDVFWFVhqJBbC2bOd64lESBzsz0rx9naaUtgu8SXTvucdO_BXFW4w-Y0TFl8Qwa3iFCK1oU-O6Or4oTgliuMKc0JeP3k-K85R2KC8qsWDsdXFCG0EorslpcfUTdAqj7kttZ3_ws4dUBlfOHZRTd-z7kKYOIpSDtzEYHwZY2lMujaPPY7k6pTfFK6f7BOf3z7Pi97erX5fX1ebH95vLi01lG4TnyglAUhBHNG2bptYCm1Zw5pCmyGDd1Bwa6iQy3DlmQMiWC4olGEaAMkTpWXGzetugd2qKftDxqIL26q4Q4lbpOHvbgzKNZIAaLHSLmdPGOIwEMGsocMSNzK6vq2vamwFaC-Mcdf9E-rQz-k5tw0FJWSNGURa8XwUhzV4l62ewnQ3jCHZWWNYif3OGPq1Q98x9fbFRSw0xwvMih4X9eH-iGP7sIc1q8MlC3-sRwj4pwgVCHBNCMvrhGboL-5ivcaG4JIIQuQjJSuVLSimCezgBRmpJkVpTpHKK1F2K1DEPvXv8Xx5G_mYmA3QFUm6NW4j_9v6P9hYnZNGc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779282291</pqid></control><display><type>article</type><title>Seasonal activities of the phyllosphere microbiome of perennial crops</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Howe, Adina ; Stopnisek, Nejc ; Dooley, Shane K. ; Yang, Fan ; Grady, Keara L. ; Shade, Ashley</creator><creatorcontrib>Howe, Adina ; Stopnisek, Nejc ; Dooley, Shane K. ; Yang, Fan ; Grady, Keara L. ; Shade, Ashley ; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</creatorcontrib><description>Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs). We find that classes represented by these MAGs (Actinomycetia, Alpha- and Gamma- Proteobacteria, and Bacteroidota) are active in the late season, and upregulate transcripts for short-chain dehydrogenase, molybdopterin oxidoreductase, and polyketide cyclase. Stress-associated pathways are expressed for most MAGs, suggesting engagement with the host environment. We also detect seasonally activated biosynthetic pathways for terpenes and various non-ribosomal peptide pathways that are poorly annotated. Our findings support that leaf-associated bacterial populations are seasonally dynamic and responsive to host cues. Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, Howe et al. use metagenomics and metatranscriptomics to study changes in the leaf microbiome of perennial crops over two growing seasons.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-36515-y</identifier><identifier>PMID: 36823152</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/22 ; 45/23 ; 45/90 ; 45/91 ; 631/158/855 ; 631/326/2565/2134 ; 631/326/2565/2142 ; 631/449/2676 ; Agricultural sciences ; Bacteria - genetics ; BASIC BIOLOGICAL SCIENCES ; Biodiversity and Ecology ; Crop production ; Crops ; Ecology, environment ; Environmental Sciences ; Genomes ; Growing season ; Humanities and Social Sciences ; Leaves ; Life Sciences ; Metagenome ; Metagenomics ; Microbial ecology ; Microbiology and Parasitology ; Microbiome ; Microbiomes ; Microbiota - genetics ; Microorganisms ; Molybdopterin ; multidisciplinary ; Oxidoreductase ; Panicum ; Panicum virgatum ; Perennial crops ; Phyllosphere ; Plant symbiosis ; Plants (botany) ; Productivity ; Resilience ; Science ; Science (multidisciplinary) ; Seasons ; Symbiosis ; Terpenes</subject><ispartof>Nature communications, 2023-02, Vol.14 (1), p.1039-1039, Article 1039</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033</citedby><cites>FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033</cites><orcidid>0000-0001-9742-6240 ; 0000-0002-7189-3067 ; 0000-0002-1532-6826 ; 0000000197426240 ; 0000000271893067 ; 0000000215326826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779282291/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779282291?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36823152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04277772$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1958601$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Howe, Adina</creatorcontrib><creatorcontrib>Stopnisek, Nejc</creatorcontrib><creatorcontrib>Dooley, Shane K.</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Grady, Keara L.</creatorcontrib><creatorcontrib>Shade, Ashley</creatorcontrib><creatorcontrib>Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</creatorcontrib><title>Seasonal activities of the phyllosphere microbiome of perennial crops</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs). We find that classes represented by these MAGs (Actinomycetia, Alpha- and Gamma- Proteobacteria, and Bacteroidota) are active in the late season, and upregulate transcripts for short-chain dehydrogenase, molybdopterin oxidoreductase, and polyketide cyclase. Stress-associated pathways are expressed for most MAGs, suggesting engagement with the host environment. We also detect seasonally activated biosynthetic pathways for terpenes and various non-ribosomal peptide pathways that are poorly annotated. Our findings support that leaf-associated bacterial populations are seasonally dynamic and responsive to host cues. Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, Howe et al. use metagenomics and metatranscriptomics to study changes in the leaf microbiome of perennial crops over two growing seasons.</description><subject>45/22</subject><subject>45/23</subject><subject>45/90</subject><subject>45/91</subject><subject>631/158/855</subject><subject>631/326/2565/2134</subject><subject>631/326/2565/2142</subject><subject>631/449/2676</subject><subject>Agricultural sciences</subject><subject>Bacteria - genetics</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biodiversity and Ecology</subject><subject>Crop production</subject><subject>Crops</subject><subject>Ecology, environment</subject><subject>Environmental Sciences</subject><subject>Genomes</subject><subject>Growing season</subject><subject>Humanities and Social Sciences</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Metagenome</subject><subject>Metagenomics</subject><subject>Microbial ecology</subject><subject>Microbiology and Parasitology</subject><subject>Microbiome</subject><subject>Microbiomes</subject><subject>Microbiota - genetics</subject><subject>Microorganisms</subject><subject>Molybdopterin</subject><subject>multidisciplinary</subject><subject>Oxidoreductase</subject><subject>Panicum</subject><subject>Panicum virgatum</subject><subject>Perennial crops</subject><subject>Phyllosphere</subject><subject>Plant symbiosis</subject><subject>Plants (botany)</subject><subject>Productivity</subject><subject>Resilience</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seasons</subject><subject>Symbiosis</subject><subject>Terpenes</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAURiMEolXpC7BAEWxgEfBfYnuDVFWFVhqJBbC2bOd64lESBzsz0rx9naaUtgu8SXTvucdO_BXFW4w-Y0TFl8Qwa3iFCK1oU-O6Or4oTgliuMKc0JeP3k-K85R2KC8qsWDsdXFCG0EorslpcfUTdAqj7kttZ3_ws4dUBlfOHZRTd-z7kKYOIpSDtzEYHwZY2lMujaPPY7k6pTfFK6f7BOf3z7Pi97erX5fX1ebH95vLi01lG4TnyglAUhBHNG2bptYCm1Zw5pCmyGDd1Bwa6iQy3DlmQMiWC4olGEaAMkTpWXGzetugd2qKftDxqIL26q4Q4lbpOHvbgzKNZIAaLHSLmdPGOIwEMGsocMSNzK6vq2vamwFaC-Mcdf9E-rQz-k5tw0FJWSNGURa8XwUhzV4l62ewnQ3jCHZWWNYif3OGPq1Q98x9fbFRSw0xwvMih4X9eH-iGP7sIc1q8MlC3-sRwj4pwgVCHBNCMvrhGboL-5ivcaG4JIIQuQjJSuVLSimCezgBRmpJkVpTpHKK1F2K1DEPvXv8Xx5G_mYmA3QFUm6NW4j_9v6P9hYnZNGc</recordid><startdate>20230223</startdate><enddate>20230223</enddate><creator>Howe, Adina</creator><creator>Stopnisek, Nejc</creator><creator>Dooley, Shane K.</creator><creator>Yang, Fan</creator><creator>Grady, Keara L.</creator><creator>Shade, Ashley</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9742-6240</orcidid><orcidid>https://orcid.org/0000-0002-7189-3067</orcidid><orcidid>https://orcid.org/0000-0002-1532-6826</orcidid><orcidid>https://orcid.org/0000000197426240</orcidid><orcidid>https://orcid.org/0000000271893067</orcidid><orcidid>https://orcid.org/0000000215326826</orcidid></search><sort><creationdate>20230223</creationdate><title>Seasonal activities of the phyllosphere microbiome of perennial crops</title><author>Howe, Adina ; Stopnisek, Nejc ; Dooley, Shane K. ; Yang, Fan ; Grady, Keara L. ; Shade, Ashley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>45/22</topic><topic>45/23</topic><topic>45/90</topic><topic>45/91</topic><topic>631/158/855</topic><topic>631/326/2565/2134</topic><topic>631/326/2565/2142</topic><topic>631/449/2676</topic><topic>Agricultural sciences</topic><topic>Bacteria - genetics</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biodiversity and Ecology</topic><topic>Crop production</topic><topic>Crops</topic><topic>Ecology, environment</topic><topic>Environmental Sciences</topic><topic>Genomes</topic><topic>Growing season</topic><topic>Humanities and Social Sciences</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Metagenome</topic><topic>Metagenomics</topic><topic>Microbial ecology</topic><topic>Microbiology and Parasitology</topic><topic>Microbiome</topic><topic>Microbiomes</topic><topic>Microbiota - genetics</topic><topic>Microorganisms</topic><topic>Molybdopterin</topic><topic>multidisciplinary</topic><topic>Oxidoreductase</topic><topic>Panicum</topic><topic>Panicum virgatum</topic><topic>Perennial crops</topic><topic>Phyllosphere</topic><topic>Plant symbiosis</topic><topic>Plants (botany)</topic><topic>Productivity</topic><topic>Resilience</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seasons</topic><topic>Symbiosis</topic><topic>Terpenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howe, Adina</creatorcontrib><creatorcontrib>Stopnisek, Nejc</creatorcontrib><creatorcontrib>Dooley, Shane K.</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Grady, Keara L.</creatorcontrib><creatorcontrib>Shade, Ashley</creatorcontrib><creatorcontrib>Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howe, Adina</au><au>Stopnisek, Nejc</au><au>Dooley, Shane K.</au><au>Yang, Fan</au><au>Grady, Keara L.</au><au>Shade, Ashley</au><aucorp>Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal activities of the phyllosphere microbiome of perennial crops</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-02-23</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>1039</spage><epage>1039</epage><pages>1039-1039</pages><artnum>1039</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs). We find that classes represented by these MAGs (Actinomycetia, Alpha- and Gamma- Proteobacteria, and Bacteroidota) are active in the late season, and upregulate transcripts for short-chain dehydrogenase, molybdopterin oxidoreductase, and polyketide cyclase. Stress-associated pathways are expressed for most MAGs, suggesting engagement with the host environment. We also detect seasonally activated biosynthetic pathways for terpenes and various non-ribosomal peptide pathways that are poorly annotated. Our findings support that leaf-associated bacterial populations are seasonally dynamic and responsive to host cues. Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, Howe et al. use metagenomics and metatranscriptomics to study changes in the leaf microbiome of perennial crops over two growing seasons.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36823152</pmid><doi>10.1038/s41467-023-36515-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9742-6240</orcidid><orcidid>https://orcid.org/0000-0002-7189-3067</orcidid><orcidid>https://orcid.org/0000-0002-1532-6826</orcidid><orcidid>https://orcid.org/0000000197426240</orcidid><orcidid>https://orcid.org/0000000271893067</orcidid><orcidid>https://orcid.org/0000000215326826</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-02, Vol.14 (1), p.1039-1039, Article 1039
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b694e0618ad14fabbf108e4cb3e707b9
source Open Access: PubMed Central; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 45/22
45/23
45/90
45/91
631/158/855
631/326/2565/2134
631/326/2565/2142
631/449/2676
Agricultural sciences
Bacteria - genetics
BASIC BIOLOGICAL SCIENCES
Biodiversity and Ecology
Crop production
Crops
Ecology, environment
Environmental Sciences
Genomes
Growing season
Humanities and Social Sciences
Leaves
Life Sciences
Metagenome
Metagenomics
Microbial ecology
Microbiology and Parasitology
Microbiome
Microbiomes
Microbiota - genetics
Microorganisms
Molybdopterin
multidisciplinary
Oxidoreductase
Panicum
Panicum virgatum
Perennial crops
Phyllosphere
Plant symbiosis
Plants (botany)
Productivity
Resilience
Science
Science (multidisciplinary)
Seasons
Symbiosis
Terpenes
title Seasonal activities of the phyllosphere microbiome of perennial crops
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20activities%20of%20the%20phyllosphere%20microbiome%20of%20perennial%20crops&rft.jtitle=Nature%20communications&rft.au=Howe,%20Adina&rft.aucorp=Center%20for%20Advanced%20Bioenergy%20and%20Bioproducts%20Innovation%20(CABBI),%20Urbana,%20IL%20(United%20States)&rft.date=2023-02-23&rft.volume=14&rft.issue=1&rft.spage=1039&rft.epage=1039&rft.pages=1039-1039&rft.artnum=1039&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-36515-y&rft_dat=%3Cproquest_doaj_%3E2780071222%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c601t-f8e0982f2a3d665a81bd874f0a30b1a657e63f90b7ff4be89d78319eb42e34033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779282291&rft_id=info:pmid/36823152&rfr_iscdi=true