Loading…

Approximating the Matrix Sign Function Using a Novel Iterative Method

This study presents a matrix iterative method for finding the sign of a square complex matrix. It is shown that the sequence of iterates converges to the sign and has asymptotical stability, provided that the initial matrix is appropriately chosen. Some illustrations are presented to support the the...

Full description

Saved in:
Bibliographic Details
Published in:Abstract and Applied Analysis 2014-01, Vol.2014, p.127-135
Main Authors: Soleymani, F., Stanimirović, P. S., Shateyi, S., Haghani, F. Khaksar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233
cites cdi_FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233
container_end_page 135
container_issue
container_start_page 127
container_title Abstract and Applied Analysis
container_volume 2014
creator Soleymani, F.
Stanimirović, P. S.
Shateyi, S.
Haghani, F. Khaksar
description This study presents a matrix iterative method for finding the sign of a square complex matrix. It is shown that the sequence of iterates converges to the sign and has asymptotical stability, provided that the initial matrix is appropriately chosen. Some illustrations are presented to support the theory.
doi_str_mv 10.1155/2014/105301
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b6d0af7c18ba4598af965d44257192f2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A426542729</galeid><airiti_id>P20160825001_201412_201609080014_201609080014_127_135</airiti_id><doaj_id>oai_doaj_org_article_b6d0af7c18ba4598af965d44257192f2</doaj_id><sourcerecordid>A426542729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233</originalsourceid><addsrcrecordid>eNqFUUtvEzEYXCGQKIUTf2AlbqC0_vzeG1HUQqTwkGjP1re2N3GUroPXacu_x5uNinpCtmR7PDMae6rqPZALACEuKQF-CUQwAi-qM5BazQgnzcuyJ1rMGFPidfVmGLaEEKY4P6uu5vt9io_hDnPo13Xe-Pob5hQe619h3dfXh97mEPv6dhivsf4e7_2uXmafiuC-kH3eRPe2etXhbvDvTut5dXN9dbP4Olv9-LJczFczFJLnWYsenNCC2w4tlaq10GjGvceWIVKvOseIo4htJ4CxRgrQtFWAkqCnjJ1Xy8nWRdyafSqp0x8TMZgjENPaYMrB7rxppSPYKQu6RS4ajV1xc5xToaChHS1enyev8vytt9kf7C64Z6aL29UJPS2IaIADlURyUMXiw5PF74MfstnGQ-rLB5hSBtVlqjH0xcRaY8kV-i7mhLYM5--Cjb3vQsHnnErBqaJNEXyaBDbFYUi-ewoFxIw1m7FmM9Vc2B8n9ib0Dh_Cf8iriYwhhRz-5f1ZWJJoKgiBowKoOUIN0WQ0eHYAqgwwwf4CkAC5uQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552852873</pqid></control><display><type>article</type><title>Approximating the Matrix Sign Function Using a Novel Iterative Method</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Soleymani, F. ; Stanimirović, P. S. ; Shateyi, S. ; Haghani, F. Khaksar</creator><contributor>Torregrosa, Juan R.</contributor><creatorcontrib>Soleymani, F. ; Stanimirović, P. S. ; Shateyi, S. ; Haghani, F. Khaksar ; Torregrosa, Juan R.</creatorcontrib><description>This study presents a matrix iterative method for finding the sign of a square complex matrix. It is shown that the sequence of iterates converges to the sign and has asymptotical stability, provided that the initial matrix is appropriately chosen. Some illustrations are presented to support the theory.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2014/105301</identifier><language>eng</language><publisher>New York: Hindawi Limiteds</publisher><subject>Applied mathematics ; Approximation theory ; Colleges &amp; universities ; Convergence (Mathematics) ; Iterative methods ; Iterative methods (Mathematics) ; Linear algebra ; Mathematical research ; Mathematics ; Matrices ; Sequences (Mathematics)</subject><ispartof>Abstract and Applied Analysis, 2014-01, Vol.2014, p.127-135</ispartof><rights>Copyright © 2014 F. Soleymani et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 F. Soleymani et al. F. Soleymani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2014 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233</citedby><cites>FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1552852873/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1552852873?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Torregrosa, Juan R.</contributor><creatorcontrib>Soleymani, F.</creatorcontrib><creatorcontrib>Stanimirović, P. S.</creatorcontrib><creatorcontrib>Shateyi, S.</creatorcontrib><creatorcontrib>Haghani, F. Khaksar</creatorcontrib><title>Approximating the Matrix Sign Function Using a Novel Iterative Method</title><title>Abstract and Applied Analysis</title><description>This study presents a matrix iterative method for finding the sign of a square complex matrix. It is shown that the sequence of iterates converges to the sign and has asymptotical stability, provided that the initial matrix is appropriately chosen. Some illustrations are presented to support the theory.</description><subject>Applied mathematics</subject><subject>Approximation theory</subject><subject>Colleges &amp; universities</subject><subject>Convergence (Mathematics)</subject><subject>Iterative methods</subject><subject>Iterative methods (Mathematics)</subject><subject>Linear algebra</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Sequences (Mathematics)</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFUUtvEzEYXCGQKIUTf2AlbqC0_vzeG1HUQqTwkGjP1re2N3GUroPXacu_x5uNinpCtmR7PDMae6rqPZALACEuKQF-CUQwAi-qM5BazQgnzcuyJ1rMGFPidfVmGLaEEKY4P6uu5vt9io_hDnPo13Xe-Pob5hQe619h3dfXh97mEPv6dhivsf4e7_2uXmafiuC-kH3eRPe2etXhbvDvTut5dXN9dbP4Olv9-LJczFczFJLnWYsenNCC2w4tlaq10GjGvceWIVKvOseIo4htJ4CxRgrQtFWAkqCnjJ1Xy8nWRdyafSqp0x8TMZgjENPaYMrB7rxppSPYKQu6RS4ajV1xc5xToaChHS1enyev8vytt9kf7C64Z6aL29UJPS2IaIADlURyUMXiw5PF74MfstnGQ-rLB5hSBtVlqjH0xcRaY8kV-i7mhLYM5--Cjb3vQsHnnErBqaJNEXyaBDbFYUi-ewoFxIw1m7FmM9Vc2B8n9ib0Dh_Cf8iriYwhhRz-5f1ZWJJoKgiBowKoOUIN0WQ0eHYAqgwwwf4CkAC5uQ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Soleymani, F.</creator><creator>Stanimirović, P. S.</creator><creator>Shateyi, S.</creator><creator>Haghani, F. Khaksar</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Approximating the Matrix Sign Function Using a Novel Iterative Method</title><author>Soleymani, F. ; Stanimirović, P. S. ; Shateyi, S. ; Haghani, F. Khaksar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied mathematics</topic><topic>Approximation theory</topic><topic>Colleges &amp; universities</topic><topic>Convergence (Mathematics)</topic><topic>Iterative methods</topic><topic>Iterative methods (Mathematics)</topic><topic>Linear algebra</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Sequences (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soleymani, F.</creatorcontrib><creatorcontrib>Stanimirović, P. S.</creatorcontrib><creatorcontrib>Shateyi, S.</creatorcontrib><creatorcontrib>Haghani, F. Khaksar</creatorcontrib><collection>華藝線上圖書館</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soleymani, F.</au><au>Stanimirović, P. S.</au><au>Shateyi, S.</au><au>Haghani, F. Khaksar</au><au>Torregrosa, Juan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating the Matrix Sign Function Using a Novel Iterative Method</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><spage>127</spage><epage>135</epage><pages>127-135</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>This study presents a matrix iterative method for finding the sign of a square complex matrix. It is shown that the sequence of iterates converges to the sign and has asymptotical stability, provided that the initial matrix is appropriately chosen. Some illustrations are presented to support the theory.</abstract><cop>New York</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2014/105301</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-3375
ispartof Abstract and Applied Analysis, 2014-01, Vol.2014, p.127-135
issn 1085-3375
1687-0409
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b6d0af7c18ba4598af965d44257192f2
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Applied mathematics
Approximation theory
Colleges & universities
Convergence (Mathematics)
Iterative methods
Iterative methods (Mathematics)
Linear algebra
Mathematical research
Mathematics
Matrices
Sequences (Mathematics)
title Approximating the Matrix Sign Function Using a Novel Iterative Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20the%20Matrix%20Sign%20Function%20Using%20a%20Novel%20Iterative%20Method&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Soleymani,%20F.&rft.date=2014-01-01&rft.volume=2014&rft.spage=127&rft.epage=135&rft.pages=127-135&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2014/105301&rft_dat=%3Cgale_doaj_%3EA426542729%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552852873&rft_id=info:pmid/&rft_galeid=A426542729&rft_airiti_id=P20160825001_201412_201609080014_201609080014_127_135&rfr_iscdi=true