Loading…
Approximating the Matrix Sign Function Using a Novel Iterative Method
This study presents a matrix iterative method for finding the sign of a square complex matrix. It is shown that the sequence of iterates converges to the sign and has asymptotical stability, provided that the initial matrix is appropriately chosen. Some illustrations are presented to support the the...
Saved in:
Published in: | Abstract and Applied Analysis 2014-01, Vol.2014, p.127-135 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233 |
---|---|
cites | cdi_FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233 |
container_end_page | 135 |
container_issue | |
container_start_page | 127 |
container_title | Abstract and Applied Analysis |
container_volume | 2014 |
creator | Soleymani, F. Stanimirović, P. S. Shateyi, S. Haghani, F. Khaksar |
description | This study presents a matrix iterative method for finding the sign of a square complex matrix. It is shown that the sequence of iterates converges to the sign and has asymptotical stability, provided that the initial matrix is appropriately chosen. Some illustrations are presented to support the theory. |
doi_str_mv | 10.1155/2014/105301 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b6d0af7c18ba4598af965d44257192f2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A426542729</galeid><airiti_id>P20160825001_201412_201609080014_201609080014_127_135</airiti_id><doaj_id>oai_doaj_org_article_b6d0af7c18ba4598af965d44257192f2</doaj_id><sourcerecordid>A426542729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233</originalsourceid><addsrcrecordid>eNqFUUtvEzEYXCGQKIUTf2AlbqC0_vzeG1HUQqTwkGjP1re2N3GUroPXacu_x5uNinpCtmR7PDMae6rqPZALACEuKQF-CUQwAi-qM5BazQgnzcuyJ1rMGFPidfVmGLaEEKY4P6uu5vt9io_hDnPo13Xe-Pob5hQe619h3dfXh97mEPv6dhivsf4e7_2uXmafiuC-kH3eRPe2etXhbvDvTut5dXN9dbP4Olv9-LJczFczFJLnWYsenNCC2w4tlaq10GjGvceWIVKvOseIo4htJ4CxRgrQtFWAkqCnjJ1Xy8nWRdyafSqp0x8TMZgjENPaYMrB7rxppSPYKQu6RS4ajV1xc5xToaChHS1enyev8vytt9kf7C64Z6aL29UJPS2IaIADlURyUMXiw5PF74MfstnGQ-rLB5hSBtVlqjH0xcRaY8kV-i7mhLYM5--Cjb3vQsHnnErBqaJNEXyaBDbFYUi-ewoFxIw1m7FmM9Vc2B8n9ib0Dh_Cf8iriYwhhRz-5f1ZWJJoKgiBowKoOUIN0WQ0eHYAqgwwwf4CkAC5uQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552852873</pqid></control><display><type>article</type><title>Approximating the Matrix Sign Function Using a Novel Iterative Method</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Soleymani, F. ; Stanimirović, P. S. ; Shateyi, S. ; Haghani, F. Khaksar</creator><contributor>Torregrosa, Juan R.</contributor><creatorcontrib>Soleymani, F. ; Stanimirović, P. S. ; Shateyi, S. ; Haghani, F. Khaksar ; Torregrosa, Juan R.</creatorcontrib><description>This study presents a matrix iterative method for finding the sign of a square complex matrix. It is shown that the sequence of iterates converges to the sign and has asymptotical stability, provided that the initial matrix is appropriately chosen. Some illustrations are presented to support the theory.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2014/105301</identifier><language>eng</language><publisher>New York: Hindawi Limiteds</publisher><subject>Applied mathematics ; Approximation theory ; Colleges & universities ; Convergence (Mathematics) ; Iterative methods ; Iterative methods (Mathematics) ; Linear algebra ; Mathematical research ; Mathematics ; Matrices ; Sequences (Mathematics)</subject><ispartof>Abstract and Applied Analysis, 2014-01, Vol.2014, p.127-135</ispartof><rights>Copyright © 2014 F. Soleymani et al.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 F. Soleymani et al. F. Soleymani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2014 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233</citedby><cites>FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1552852873/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1552852873?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Torregrosa, Juan R.</contributor><creatorcontrib>Soleymani, F.</creatorcontrib><creatorcontrib>Stanimirović, P. S.</creatorcontrib><creatorcontrib>Shateyi, S.</creatorcontrib><creatorcontrib>Haghani, F. Khaksar</creatorcontrib><title>Approximating the Matrix Sign Function Using a Novel Iterative Method</title><title>Abstract and Applied Analysis</title><description>This study presents a matrix iterative method for finding the sign of a square complex matrix. It is shown that the sequence of iterates converges to the sign and has asymptotical stability, provided that the initial matrix is appropriately chosen. Some illustrations are presented to support the theory.</description><subject>Applied mathematics</subject><subject>Approximation theory</subject><subject>Colleges & universities</subject><subject>Convergence (Mathematics)</subject><subject>Iterative methods</subject><subject>Iterative methods (Mathematics)</subject><subject>Linear algebra</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Sequences (Mathematics)</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFUUtvEzEYXCGQKIUTf2AlbqC0_vzeG1HUQqTwkGjP1re2N3GUroPXacu_x5uNinpCtmR7PDMae6rqPZALACEuKQF-CUQwAi-qM5BazQgnzcuyJ1rMGFPidfVmGLaEEKY4P6uu5vt9io_hDnPo13Xe-Pob5hQe619h3dfXh97mEPv6dhivsf4e7_2uXmafiuC-kH3eRPe2etXhbvDvTut5dXN9dbP4Olv9-LJczFczFJLnWYsenNCC2w4tlaq10GjGvceWIVKvOseIo4htJ4CxRgrQtFWAkqCnjJ1Xy8nWRdyafSqp0x8TMZgjENPaYMrB7rxppSPYKQu6RS4ajV1xc5xToaChHS1enyev8vytt9kf7C64Z6aL29UJPS2IaIADlURyUMXiw5PF74MfstnGQ-rLB5hSBtVlqjH0xcRaY8kV-i7mhLYM5--Cjb3vQsHnnErBqaJNEXyaBDbFYUi-ewoFxIw1m7FmM9Vc2B8n9ib0Dh_Cf8iriYwhhRz-5f1ZWJJoKgiBowKoOUIN0WQ0eHYAqgwwwf4CkAC5uQ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Soleymani, F.</creator><creator>Stanimirović, P. S.</creator><creator>Shateyi, S.</creator><creator>Haghani, F. Khaksar</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Approximating the Matrix Sign Function Using a Novel Iterative Method</title><author>Soleymani, F. ; Stanimirović, P. S. ; Shateyi, S. ; Haghani, F. Khaksar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied mathematics</topic><topic>Approximation theory</topic><topic>Colleges & universities</topic><topic>Convergence (Mathematics)</topic><topic>Iterative methods</topic><topic>Iterative methods (Mathematics)</topic><topic>Linear algebra</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Sequences (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soleymani, F.</creatorcontrib><creatorcontrib>Stanimirović, P. S.</creatorcontrib><creatorcontrib>Shateyi, S.</creatorcontrib><creatorcontrib>Haghani, F. Khaksar</creatorcontrib><collection>華藝線上圖書館</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soleymani, F.</au><au>Stanimirović, P. S.</au><au>Shateyi, S.</au><au>Haghani, F. Khaksar</au><au>Torregrosa, Juan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating the Matrix Sign Function Using a Novel Iterative Method</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><spage>127</spage><epage>135</epage><pages>127-135</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>This study presents a matrix iterative method for finding the sign of a square complex matrix. It is shown that the sequence of iterates converges to the sign and has asymptotical stability, provided that the initial matrix is appropriately chosen. Some illustrations are presented to support the theory.</abstract><cop>New York</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2014/105301</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and Applied Analysis, 2014-01, Vol.2014, p.127-135 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b6d0af7c18ba4598af965d44257192f2 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Applied mathematics Approximation theory Colleges & universities Convergence (Mathematics) Iterative methods Iterative methods (Mathematics) Linear algebra Mathematical research Mathematics Matrices Sequences (Mathematics) |
title | Approximating the Matrix Sign Function Using a Novel Iterative Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20the%20Matrix%20Sign%20Function%20Using%20a%20Novel%20Iterative%20Method&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Soleymani,%20F.&rft.date=2014-01-01&rft.volume=2014&rft.spage=127&rft.epage=135&rft.pages=127-135&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2014/105301&rft_dat=%3Cgale_doaj_%3EA426542729%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a564t-bae1d5854cfac267bc19834eeab3aa2e7fd30d2aabf5133965182b71a60ae233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552852873&rft_id=info:pmid/&rft_galeid=A426542729&rft_airiti_id=P20160825001_201412_201609080014_201609080014_127_135&rfr_iscdi=true |