Loading…
Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system
The aggregation of plankton species along fjords can be linked to physical properties and processes such as stratification, turbulence and oxygen concentration. The goal of this study is to determine how water column properties and turbulent mixing affect the horizontal and vertical distributions of...
Saved in:
Published in: | Ocean science 2018-10, Vol.14 (5), p.1185-1206 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03 |
container_end_page | 1206 |
container_issue | 5 |
container_start_page | 1185 |
container_title | Ocean science |
container_volume | 14 |
creator | Perez-Santos, Ivan Castro, Leonardo Ross, Lauren Niklitschek, Edwin Mayorga, Nicolas Cubillos, Luis Gutierrez, Mariano Escalona, Eduardo Castillo, Manuel Alegría, Nicolás Daneri, Giovanni |
description | The
aggregation of plankton species along fjords can be linked to physical
properties and processes such as stratification, turbulence and oxygen
concentration. The goal of this study is to determine how water column
properties and turbulent mixing affect the horizontal and vertical
distributions of macrozooplankton along the only northern Patagonian fjord
known to date, where hypoxic conditions occur in the water column. Acoustic
Doppler current profiler moorings, scientific echo-sounder transects and
in situ plankton abundance measurements were used to study macrozooplankton
assemblages and migration patterns along Puyuhuapi Fjord and Jacaf Channel in
Chilean Patagonia. The dissipation of turbulent kinetic energy was quantified
through vertical microstructure profiles collected throughout time in areas
with high macrozooplankton concentrations. The acoustic records and in situ
macrozooplankton data revealed diel vertical migrations (DVM) of
siphonophores, chaetognaths and euphausiids. In particular, a dense
biological backscattering layer was observed along Puyuhuapi Fjord between
the surface and the top of the hypoxic boundary layer (∼100 m), which
limited the vertical distribution of most macrozooplankton and their DVM,
generating a significant reduction of habitat. Aggregations of
macrozooplankton and fishes were most abundant around a submarine sill in
Jacaf Channel. In this location macrozooplankton were distributed throughout
the water column (0 to ∼200 m), with no evidence of a hypoxic boundary
due to the intense mixing near the sill. In particular, turbulence
measurements taken near the sill indicated high dissipation rates of
turbulent kinetic energy (ε∼10-5 W kg−1) and
vertical diapycnal eddy diffusivity (Kρ∼10-3 m2 s−1). The elevated vertical mixing ensures that the
water column is well oxygenated (3–6 mL L−1, 60 %–80 %
saturation), creating a suitable environment for macrozooplankton and fish
aggregations. Turbulence induced by tidal flow over the sill apparently
enhances the interchange of nutrients and oxygen concentrations with the
surface layer, creating a productive environment for many marine species,
where the prey–predator relationship might be favored. |
doi_str_mv | 10.5194/os-14-1185-2018 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b6d4895111ba405ebfad2d3b5ecaba7b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557525521</galeid><doaj_id>oai_doaj_org_article_b6d4895111ba405ebfad2d3b5ecaba7b</doaj_id><sourcerecordid>A557525521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03</originalsourceid><addsrcrecordid>eNptks2LFDEQxRtRcF09ew148tC7-eh00sdl8WNgYUXXc6gk1W2GnmRM0rDz39vjyOqA5FDh8atHJfWa5i2jV5IN3XUqLetaxrRsOWX6WXPBNOMtVQN__s_9ZfOqlC2lHeOCXTT-Ycl2mTE6JBA9-XHYp8cAxKVYc7BLRVIT8RgLEhvSnKbgYCbFQa2YQ5zIDAfMhYRIgHyBClOKASIZtyl7Ug6l4u5182KEueCbP_Wy-f7xw8Pt5_bu_tPm9uaudZ1StdVeSI1IAZVVAnrXoRQOemUB7cC5HpXtpRbacYoUexAcUEtvqeSDQCoum83J1yfYmn0OO8gHkyCY30LKk4Fcg5vR2N53epCMMQsdlWhH8NwLK9GBBWVXr3cnr31OPxcs1WzTkuM6vuGMKdrTXtG_1ASraYhjqhncLhRnbqRUkkvJ2Upd_Ydaj8ddWH8ax7DqZw3vzxqO28DHOsFSitl8-3rOXp9Yl1MpGcenhzNqjskwqRjWmWMyzDEZ4hdqN6sx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117060670</pqid></control><display><type>article</type><title>Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Perez-Santos, Ivan ; Castro, Leonardo ; Ross, Lauren ; Niklitschek, Edwin ; Mayorga, Nicolas ; Cubillos, Luis ; Gutierrez, Mariano ; Escalona, Eduardo ; Castillo, Manuel ; Alegría, Nicolás ; Daneri, Giovanni</creator><creatorcontrib>Perez-Santos, Ivan ; Castro, Leonardo ; Ross, Lauren ; Niklitschek, Edwin ; Mayorga, Nicolas ; Cubillos, Luis ; Gutierrez, Mariano ; Escalona, Eduardo ; Castillo, Manuel ; Alegría, Nicolás ; Daneri, Giovanni</creatorcontrib><description>The
aggregation of plankton species along fjords can be linked to physical
properties and processes such as stratification, turbulence and oxygen
concentration. The goal of this study is to determine how water column
properties and turbulent mixing affect the horizontal and vertical
distributions of macrozooplankton along the only northern Patagonian fjord
known to date, where hypoxic conditions occur in the water column. Acoustic
Doppler current profiler moorings, scientific echo-sounder transects and
in situ plankton abundance measurements were used to study macrozooplankton
assemblages and migration patterns along Puyuhuapi Fjord and Jacaf Channel in
Chilean Patagonia. The dissipation of turbulent kinetic energy was quantified
through vertical microstructure profiles collected throughout time in areas
with high macrozooplankton concentrations. The acoustic records and in situ
macrozooplankton data revealed diel vertical migrations (DVM) of
siphonophores, chaetognaths and euphausiids. In particular, a dense
biological backscattering layer was observed along Puyuhuapi Fjord between
the surface and the top of the hypoxic boundary layer (∼100 m), which
limited the vertical distribution of most macrozooplankton and their DVM,
generating a significant reduction of habitat. Aggregations of
macrozooplankton and fishes were most abundant around a submarine sill in
Jacaf Channel. In this location macrozooplankton were distributed throughout
the water column (0 to ∼200 m), with no evidence of a hypoxic boundary
due to the intense mixing near the sill. In particular, turbulence
measurements taken near the sill indicated high dissipation rates of
turbulent kinetic energy (ε∼10-5 W kg−1) and
vertical diapycnal eddy diffusivity (Kρ∼10-3 m2 s−1). The elevated vertical mixing ensures that the
water column is well oxygenated (3–6 mL L−1, 60 %–80 %
saturation), creating a suitable environment for macrozooplankton and fish
aggregations. Turbulence induced by tidal flow over the sill apparently
enhances the interchange of nutrients and oxygen concentrations with the
surface layer, creating a productive environment for many marine species,
where the prey–predator relationship might be favored.</description><identifier>ISSN: 1812-0792</identifier><identifier>ISSN: 1812-0784</identifier><identifier>EISSN: 1812-0792</identifier><identifier>DOI: 10.5194/os-14-1185-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Abundance ; Acoustic Doppler Current Profiler ; Aggregation ; Analysis ; Backscattering ; Boundary layers ; Density stratification ; Doppler sonar ; Echoes ; Echosounders ; Ecological aggregations ; Ecological research ; Eddy diffusion ; Eddy diffusivity ; Environmental aspects ; Fish ; Fjords ; Fluid dynamics ; Hypoxia ; Kinetic energy ; Marine plankton ; Mineral nutrients ; Mooring ; Nutrients ; Oxygen ; Physical properties ; Plankton ; Population density ; Predators ; Prey ; Profiles ; Scattering layers ; Stratification ; Surface boundary layer ; Surface layers ; Tidal currents ; Tidal flow ; Turbulence ; Turbulence measurement ; Turbulence measurements ; Turbulent flow ; Turbulent kinetic energy ; Turbulent mixing ; Vertical distribution ; Vertical migration ; Vertical migrations ; Vertical mixing ; Water column</subject><ispartof>Ocean science, 2018-10, Vol.14 (5), p.1185-1206</ispartof><rights>COPYRIGHT 2018 Copernicus GmbH</rights><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03</citedby><cites>FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03</cites><orcidid>0000-0001-5561-3494 ; 0000-0003-0641-3722 ; 0000-0003-3984-8837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2117060670/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2117060670?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Perez-Santos, Ivan</creatorcontrib><creatorcontrib>Castro, Leonardo</creatorcontrib><creatorcontrib>Ross, Lauren</creatorcontrib><creatorcontrib>Niklitschek, Edwin</creatorcontrib><creatorcontrib>Mayorga, Nicolas</creatorcontrib><creatorcontrib>Cubillos, Luis</creatorcontrib><creatorcontrib>Gutierrez, Mariano</creatorcontrib><creatorcontrib>Escalona, Eduardo</creatorcontrib><creatorcontrib>Castillo, Manuel</creatorcontrib><creatorcontrib>Alegría, Nicolás</creatorcontrib><creatorcontrib>Daneri, Giovanni</creatorcontrib><title>Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system</title><title>Ocean science</title><description>The
aggregation of plankton species along fjords can be linked to physical
properties and processes such as stratification, turbulence and oxygen
concentration. The goal of this study is to determine how water column
properties and turbulent mixing affect the horizontal and vertical
distributions of macrozooplankton along the only northern Patagonian fjord
known to date, where hypoxic conditions occur in the water column. Acoustic
Doppler current profiler moorings, scientific echo-sounder transects and
in situ plankton abundance measurements were used to study macrozooplankton
assemblages and migration patterns along Puyuhuapi Fjord and Jacaf Channel in
Chilean Patagonia. The dissipation of turbulent kinetic energy was quantified
through vertical microstructure profiles collected throughout time in areas
with high macrozooplankton concentrations. The acoustic records and in situ
macrozooplankton data revealed diel vertical migrations (DVM) of
siphonophores, chaetognaths and euphausiids. In particular, a dense
biological backscattering layer was observed along Puyuhuapi Fjord between
the surface and the top of the hypoxic boundary layer (∼100 m), which
limited the vertical distribution of most macrozooplankton and their DVM,
generating a significant reduction of habitat. Aggregations of
macrozooplankton and fishes were most abundant around a submarine sill in
Jacaf Channel. In this location macrozooplankton were distributed throughout
the water column (0 to ∼200 m), with no evidence of a hypoxic boundary
due to the intense mixing near the sill. In particular, turbulence
measurements taken near the sill indicated high dissipation rates of
turbulent kinetic energy (ε∼10-5 W kg−1) and
vertical diapycnal eddy diffusivity (Kρ∼10-3 m2 s−1). The elevated vertical mixing ensures that the
water column is well oxygenated (3–6 mL L−1, 60 %–80 %
saturation), creating a suitable environment for macrozooplankton and fish
aggregations. Turbulence induced by tidal flow over the sill apparently
enhances the interchange of nutrients and oxygen concentrations with the
surface layer, creating a productive environment for many marine species,
where the prey–predator relationship might be favored.</description><subject>Abundance</subject><subject>Acoustic Doppler Current Profiler</subject><subject>Aggregation</subject><subject>Analysis</subject><subject>Backscattering</subject><subject>Boundary layers</subject><subject>Density stratification</subject><subject>Doppler sonar</subject><subject>Echoes</subject><subject>Echosounders</subject><subject>Ecological aggregations</subject><subject>Ecological research</subject><subject>Eddy diffusion</subject><subject>Eddy diffusivity</subject><subject>Environmental aspects</subject><subject>Fish</subject><subject>Fjords</subject><subject>Fluid dynamics</subject><subject>Hypoxia</subject><subject>Kinetic energy</subject><subject>Marine plankton</subject><subject>Mineral nutrients</subject><subject>Mooring</subject><subject>Nutrients</subject><subject>Oxygen</subject><subject>Physical properties</subject><subject>Plankton</subject><subject>Population density</subject><subject>Predators</subject><subject>Prey</subject><subject>Profiles</subject><subject>Scattering layers</subject><subject>Stratification</subject><subject>Surface boundary layer</subject><subject>Surface layers</subject><subject>Tidal currents</subject><subject>Tidal flow</subject><subject>Turbulence</subject><subject>Turbulence measurement</subject><subject>Turbulence measurements</subject><subject>Turbulent flow</subject><subject>Turbulent kinetic energy</subject><subject>Turbulent mixing</subject><subject>Vertical distribution</subject><subject>Vertical migration</subject><subject>Vertical migrations</subject><subject>Vertical mixing</subject><subject>Water column</subject><issn>1812-0792</issn><issn>1812-0784</issn><issn>1812-0792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks2LFDEQxRtRcF09ew148tC7-eh00sdl8WNgYUXXc6gk1W2GnmRM0rDz39vjyOqA5FDh8atHJfWa5i2jV5IN3XUqLetaxrRsOWX6WXPBNOMtVQN__s_9ZfOqlC2lHeOCXTT-Ycl2mTE6JBA9-XHYp8cAxKVYc7BLRVIT8RgLEhvSnKbgYCbFQa2YQ5zIDAfMhYRIgHyBClOKASIZtyl7Ug6l4u5182KEueCbP_Wy-f7xw8Pt5_bu_tPm9uaudZ1StdVeSI1IAZVVAnrXoRQOemUB7cC5HpXtpRbacYoUexAcUEtvqeSDQCoum83J1yfYmn0OO8gHkyCY30LKk4Fcg5vR2N53epCMMQsdlWhH8NwLK9GBBWVXr3cnr31OPxcs1WzTkuM6vuGMKdrTXtG_1ASraYhjqhncLhRnbqRUkkvJ2Upd_Ydaj8ddWH8ax7DqZw3vzxqO28DHOsFSitl8-3rOXp9Yl1MpGcenhzNqjskwqRjWmWMyzDEZ4hdqN6sx</recordid><startdate>20181009</startdate><enddate>20181009</enddate><creator>Perez-Santos, Ivan</creator><creator>Castro, Leonardo</creator><creator>Ross, Lauren</creator><creator>Niklitschek, Edwin</creator><creator>Mayorga, Nicolas</creator><creator>Cubillos, Luis</creator><creator>Gutierrez, Mariano</creator><creator>Escalona, Eduardo</creator><creator>Castillo, Manuel</creator><creator>Alegría, Nicolás</creator><creator>Daneri, Giovanni</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H99</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5561-3494</orcidid><orcidid>https://orcid.org/0000-0003-0641-3722</orcidid><orcidid>https://orcid.org/0000-0003-3984-8837</orcidid></search><sort><creationdate>20181009</creationdate><title>Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system</title><author>Perez-Santos, Ivan ; Castro, Leonardo ; Ross, Lauren ; Niklitschek, Edwin ; Mayorga, Nicolas ; Cubillos, Luis ; Gutierrez, Mariano ; Escalona, Eduardo ; Castillo, Manuel ; Alegría, Nicolás ; Daneri, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abundance</topic><topic>Acoustic Doppler Current Profiler</topic><topic>Aggregation</topic><topic>Analysis</topic><topic>Backscattering</topic><topic>Boundary layers</topic><topic>Density stratification</topic><topic>Doppler sonar</topic><topic>Echoes</topic><topic>Echosounders</topic><topic>Ecological aggregations</topic><topic>Ecological research</topic><topic>Eddy diffusion</topic><topic>Eddy diffusivity</topic><topic>Environmental aspects</topic><topic>Fish</topic><topic>Fjords</topic><topic>Fluid dynamics</topic><topic>Hypoxia</topic><topic>Kinetic energy</topic><topic>Marine plankton</topic><topic>Mineral nutrients</topic><topic>Mooring</topic><topic>Nutrients</topic><topic>Oxygen</topic><topic>Physical properties</topic><topic>Plankton</topic><topic>Population density</topic><topic>Predators</topic><topic>Prey</topic><topic>Profiles</topic><topic>Scattering layers</topic><topic>Stratification</topic><topic>Surface boundary layer</topic><topic>Surface layers</topic><topic>Tidal currents</topic><topic>Tidal flow</topic><topic>Turbulence</topic><topic>Turbulence measurement</topic><topic>Turbulence measurements</topic><topic>Turbulent flow</topic><topic>Turbulent kinetic energy</topic><topic>Turbulent mixing</topic><topic>Vertical distribution</topic><topic>Vertical migration</topic><topic>Vertical migrations</topic><topic>Vertical mixing</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez-Santos, Ivan</creatorcontrib><creatorcontrib>Castro, Leonardo</creatorcontrib><creatorcontrib>Ross, Lauren</creatorcontrib><creatorcontrib>Niklitschek, Edwin</creatorcontrib><creatorcontrib>Mayorga, Nicolas</creatorcontrib><creatorcontrib>Cubillos, Luis</creatorcontrib><creatorcontrib>Gutierrez, Mariano</creatorcontrib><creatorcontrib>Escalona, Eduardo</creatorcontrib><creatorcontrib>Castillo, Manuel</creatorcontrib><creatorcontrib>Alegría, Nicolás</creatorcontrib><creatorcontrib>Daneri, Giovanni</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Continental Europe Database</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Ocean science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez-Santos, Ivan</au><au>Castro, Leonardo</au><au>Ross, Lauren</au><au>Niklitschek, Edwin</au><au>Mayorga, Nicolas</au><au>Cubillos, Luis</au><au>Gutierrez, Mariano</au><au>Escalona, Eduardo</au><au>Castillo, Manuel</au><au>Alegría, Nicolás</au><au>Daneri, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system</atitle><jtitle>Ocean science</jtitle><date>2018-10-09</date><risdate>2018</risdate><volume>14</volume><issue>5</issue><spage>1185</spage><epage>1206</epage><pages>1185-1206</pages><issn>1812-0792</issn><issn>1812-0784</issn><eissn>1812-0792</eissn><abstract>The
aggregation of plankton species along fjords can be linked to physical
properties and processes such as stratification, turbulence and oxygen
concentration. The goal of this study is to determine how water column
properties and turbulent mixing affect the horizontal and vertical
distributions of macrozooplankton along the only northern Patagonian fjord
known to date, where hypoxic conditions occur in the water column. Acoustic
Doppler current profiler moorings, scientific echo-sounder transects and
in situ plankton abundance measurements were used to study macrozooplankton
assemblages and migration patterns along Puyuhuapi Fjord and Jacaf Channel in
Chilean Patagonia. The dissipation of turbulent kinetic energy was quantified
through vertical microstructure profiles collected throughout time in areas
with high macrozooplankton concentrations. The acoustic records and in situ
macrozooplankton data revealed diel vertical migrations (DVM) of
siphonophores, chaetognaths and euphausiids. In particular, a dense
biological backscattering layer was observed along Puyuhuapi Fjord between
the surface and the top of the hypoxic boundary layer (∼100 m), which
limited the vertical distribution of most macrozooplankton and their DVM,
generating a significant reduction of habitat. Aggregations of
macrozooplankton and fishes were most abundant around a submarine sill in
Jacaf Channel. In this location macrozooplankton were distributed throughout
the water column (0 to ∼200 m), with no evidence of a hypoxic boundary
due to the intense mixing near the sill. In particular, turbulence
measurements taken near the sill indicated high dissipation rates of
turbulent kinetic energy (ε∼10-5 W kg−1) and
vertical diapycnal eddy diffusivity (Kρ∼10-3 m2 s−1). The elevated vertical mixing ensures that the
water column is well oxygenated (3–6 mL L−1, 60 %–80 %
saturation), creating a suitable environment for macrozooplankton and fish
aggregations. Turbulence induced by tidal flow over the sill apparently
enhances the interchange of nutrients and oxygen concentrations with the
surface layer, creating a productive environment for many marine species,
where the prey–predator relationship might be favored.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/os-14-1185-2018</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5561-3494</orcidid><orcidid>https://orcid.org/0000-0003-0641-3722</orcidid><orcidid>https://orcid.org/0000-0003-3984-8837</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1812-0792 |
ispartof | Ocean science, 2018-10, Vol.14 (5), p.1185-1206 |
issn | 1812-0792 1812-0784 1812-0792 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b6d4895111ba405ebfad2d3b5ecaba7b |
source | Publicly Available Content Database; IngentaConnect Journals |
subjects | Abundance Acoustic Doppler Current Profiler Aggregation Analysis Backscattering Boundary layers Density stratification Doppler sonar Echoes Echosounders Ecological aggregations Ecological research Eddy diffusion Eddy diffusivity Environmental aspects Fish Fjords Fluid dynamics Hypoxia Kinetic energy Marine plankton Mineral nutrients Mooring Nutrients Oxygen Physical properties Plankton Population density Predators Prey Profiles Scattering layers Stratification Surface boundary layer Surface layers Tidal currents Tidal flow Turbulence Turbulence measurement Turbulence measurements Turbulent flow Turbulent kinetic energy Turbulent mixing Vertical distribution Vertical migration Vertical migrations Vertical mixing Water column |
title | Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20and%20hypoxia%20contribute%20to%20dense%20biological%20scattering%20layers%20in%20a%20Patagonian%20fjord%20system&rft.jtitle=Ocean%20science&rft.au=Perez-Santos,%20Ivan&rft.date=2018-10-09&rft.volume=14&rft.issue=5&rft.spage=1185&rft.epage=1206&rft.pages=1185-1206&rft.issn=1812-0792&rft.eissn=1812-0792&rft_id=info:doi/10.5194/os-14-1185-2018&rft_dat=%3Cgale_doaj_%3EA557525521%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117060670&rft_id=info:pmid/&rft_galeid=A557525521&rfr_iscdi=true |