Loading…

Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system

The aggregation of plankton species along fjords can be linked to physical properties and processes such as stratification, turbulence and oxygen concentration. The goal of this study is to determine how water column properties and turbulent mixing affect the horizontal and vertical distributions of...

Full description

Saved in:
Bibliographic Details
Published in:Ocean science 2018-10, Vol.14 (5), p.1185-1206
Main Authors: Perez-Santos, Ivan, Castro, Leonardo, Ross, Lauren, Niklitschek, Edwin, Mayorga, Nicolas, Cubillos, Luis, Gutierrez, Mariano, Escalona, Eduardo, Castillo, Manuel, Alegría, Nicolás, Daneri, Giovanni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03
cites cdi_FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03
container_end_page 1206
container_issue 5
container_start_page 1185
container_title Ocean science
container_volume 14
creator Perez-Santos, Ivan
Castro, Leonardo
Ross, Lauren
Niklitschek, Edwin
Mayorga, Nicolas
Cubillos, Luis
Gutierrez, Mariano
Escalona, Eduardo
Castillo, Manuel
Alegría, Nicolás
Daneri, Giovanni
description The aggregation of plankton species along fjords can be linked to physical properties and processes such as stratification, turbulence and oxygen concentration. The goal of this study is to determine how water column properties and turbulent mixing affect the horizontal and vertical distributions of macrozooplankton along the only northern Patagonian fjord known to date, where hypoxic conditions occur in the water column. Acoustic Doppler current profiler moorings, scientific echo-sounder transects and in situ plankton abundance measurements were used to study macrozooplankton assemblages and migration patterns along Puyuhuapi Fjord and Jacaf Channel in Chilean Patagonia. The dissipation of turbulent kinetic energy was quantified through vertical microstructure profiles collected throughout time in areas with high macrozooplankton concentrations. The acoustic records and in situ macrozooplankton data revealed diel vertical migrations (DVM) of siphonophores, chaetognaths and euphausiids. In particular, a dense biological backscattering layer was observed along Puyuhuapi Fjord between the surface and the top of the hypoxic boundary layer (∼100 m), which limited the vertical distribution of most macrozooplankton and their DVM, generating a significant reduction of habitat. Aggregations of macrozooplankton and fishes were most abundant around a submarine sill in Jacaf Channel. In this location macrozooplankton were distributed throughout the water column (0 to ∼200 m), with no evidence of a hypoxic boundary due to the intense mixing near the sill. In particular, turbulence measurements taken near the sill indicated high dissipation rates of turbulent kinetic energy (ε∼10-5 W kg−1) and vertical diapycnal eddy diffusivity (Kρ∼10-3 m2 s−1). The elevated vertical mixing ensures that the water column is well oxygenated (3–6 mL L−1, 60 %–80 % saturation), creating a suitable environment for macrozooplankton and fish aggregations. Turbulence induced by tidal flow over the sill apparently enhances the interchange of nutrients and oxygen concentrations with the surface layer, creating a productive environment for many marine species, where the prey–predator relationship might be favored.
doi_str_mv 10.5194/os-14-1185-2018
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b6d4895111ba405ebfad2d3b5ecaba7b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557525521</galeid><doaj_id>oai_doaj_org_article_b6d4895111ba405ebfad2d3b5ecaba7b</doaj_id><sourcerecordid>A557525521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03</originalsourceid><addsrcrecordid>eNptks2LFDEQxRtRcF09ew148tC7-eh00sdl8WNgYUXXc6gk1W2GnmRM0rDz39vjyOqA5FDh8atHJfWa5i2jV5IN3XUqLetaxrRsOWX6WXPBNOMtVQN__s_9ZfOqlC2lHeOCXTT-Ycl2mTE6JBA9-XHYp8cAxKVYc7BLRVIT8RgLEhvSnKbgYCbFQa2YQ5zIDAfMhYRIgHyBClOKASIZtyl7Ug6l4u5182KEueCbP_Wy-f7xw8Pt5_bu_tPm9uaudZ1StdVeSI1IAZVVAnrXoRQOemUB7cC5HpXtpRbacYoUexAcUEtvqeSDQCoum83J1yfYmn0OO8gHkyCY30LKk4Fcg5vR2N53epCMMQsdlWhH8NwLK9GBBWVXr3cnr31OPxcs1WzTkuM6vuGMKdrTXtG_1ASraYhjqhncLhRnbqRUkkvJ2Upd_Ydaj8ddWH8ax7DqZw3vzxqO28DHOsFSitl8-3rOXp9Yl1MpGcenhzNqjskwqRjWmWMyzDEZ4hdqN6sx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117060670</pqid></control><display><type>article</type><title>Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Perez-Santos, Ivan ; Castro, Leonardo ; Ross, Lauren ; Niklitschek, Edwin ; Mayorga, Nicolas ; Cubillos, Luis ; Gutierrez, Mariano ; Escalona, Eduardo ; Castillo, Manuel ; Alegría, Nicolás ; Daneri, Giovanni</creator><creatorcontrib>Perez-Santos, Ivan ; Castro, Leonardo ; Ross, Lauren ; Niklitschek, Edwin ; Mayorga, Nicolas ; Cubillos, Luis ; Gutierrez, Mariano ; Escalona, Eduardo ; Castillo, Manuel ; Alegría, Nicolás ; Daneri, Giovanni</creatorcontrib><description>The aggregation of plankton species along fjords can be linked to physical properties and processes such as stratification, turbulence and oxygen concentration. The goal of this study is to determine how water column properties and turbulent mixing affect the horizontal and vertical distributions of macrozooplankton along the only northern Patagonian fjord known to date, where hypoxic conditions occur in the water column. Acoustic Doppler current profiler moorings, scientific echo-sounder transects and in situ plankton abundance measurements were used to study macrozooplankton assemblages and migration patterns along Puyuhuapi Fjord and Jacaf Channel in Chilean Patagonia. The dissipation of turbulent kinetic energy was quantified through vertical microstructure profiles collected throughout time in areas with high macrozooplankton concentrations. The acoustic records and in situ macrozooplankton data revealed diel vertical migrations (DVM) of siphonophores, chaetognaths and euphausiids. In particular, a dense biological backscattering layer was observed along Puyuhuapi Fjord between the surface and the top of the hypoxic boundary layer (∼100 m), which limited the vertical distribution of most macrozooplankton and their DVM, generating a significant reduction of habitat. Aggregations of macrozooplankton and fishes were most abundant around a submarine sill in Jacaf Channel. In this location macrozooplankton were distributed throughout the water column (0 to ∼200 m), with no evidence of a hypoxic boundary due to the intense mixing near the sill. In particular, turbulence measurements taken near the sill indicated high dissipation rates of turbulent kinetic energy (ε∼10-5 W kg−1) and vertical diapycnal eddy diffusivity (Kρ∼10-3 m2 s−1). The elevated vertical mixing ensures that the water column is well oxygenated (3–6 mL L−1, 60 %–80 % saturation), creating a suitable environment for macrozooplankton and fish aggregations. Turbulence induced by tidal flow over the sill apparently enhances the interchange of nutrients and oxygen concentrations with the surface layer, creating a productive environment for many marine species, where the prey–predator relationship might be favored.</description><identifier>ISSN: 1812-0792</identifier><identifier>ISSN: 1812-0784</identifier><identifier>EISSN: 1812-0792</identifier><identifier>DOI: 10.5194/os-14-1185-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Abundance ; Acoustic Doppler Current Profiler ; Aggregation ; Analysis ; Backscattering ; Boundary layers ; Density stratification ; Doppler sonar ; Echoes ; Echosounders ; Ecological aggregations ; Ecological research ; Eddy diffusion ; Eddy diffusivity ; Environmental aspects ; Fish ; Fjords ; Fluid dynamics ; Hypoxia ; Kinetic energy ; Marine plankton ; Mineral nutrients ; Mooring ; Nutrients ; Oxygen ; Physical properties ; Plankton ; Population density ; Predators ; Prey ; Profiles ; Scattering layers ; Stratification ; Surface boundary layer ; Surface layers ; Tidal currents ; Tidal flow ; Turbulence ; Turbulence measurement ; Turbulence measurements ; Turbulent flow ; Turbulent kinetic energy ; Turbulent mixing ; Vertical distribution ; Vertical migration ; Vertical migrations ; Vertical mixing ; Water column</subject><ispartof>Ocean science, 2018-10, Vol.14 (5), p.1185-1206</ispartof><rights>COPYRIGHT 2018 Copernicus GmbH</rights><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03</citedby><cites>FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03</cites><orcidid>0000-0001-5561-3494 ; 0000-0003-0641-3722 ; 0000-0003-3984-8837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2117060670/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2117060670?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Perez-Santos, Ivan</creatorcontrib><creatorcontrib>Castro, Leonardo</creatorcontrib><creatorcontrib>Ross, Lauren</creatorcontrib><creatorcontrib>Niklitschek, Edwin</creatorcontrib><creatorcontrib>Mayorga, Nicolas</creatorcontrib><creatorcontrib>Cubillos, Luis</creatorcontrib><creatorcontrib>Gutierrez, Mariano</creatorcontrib><creatorcontrib>Escalona, Eduardo</creatorcontrib><creatorcontrib>Castillo, Manuel</creatorcontrib><creatorcontrib>Alegría, Nicolás</creatorcontrib><creatorcontrib>Daneri, Giovanni</creatorcontrib><title>Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system</title><title>Ocean science</title><description>The aggregation of plankton species along fjords can be linked to physical properties and processes such as stratification, turbulence and oxygen concentration. The goal of this study is to determine how water column properties and turbulent mixing affect the horizontal and vertical distributions of macrozooplankton along the only northern Patagonian fjord known to date, where hypoxic conditions occur in the water column. Acoustic Doppler current profiler moorings, scientific echo-sounder transects and in situ plankton abundance measurements were used to study macrozooplankton assemblages and migration patterns along Puyuhuapi Fjord and Jacaf Channel in Chilean Patagonia. The dissipation of turbulent kinetic energy was quantified through vertical microstructure profiles collected throughout time in areas with high macrozooplankton concentrations. The acoustic records and in situ macrozooplankton data revealed diel vertical migrations (DVM) of siphonophores, chaetognaths and euphausiids. In particular, a dense biological backscattering layer was observed along Puyuhuapi Fjord between the surface and the top of the hypoxic boundary layer (∼100 m), which limited the vertical distribution of most macrozooplankton and their DVM, generating a significant reduction of habitat. Aggregations of macrozooplankton and fishes were most abundant around a submarine sill in Jacaf Channel. In this location macrozooplankton were distributed throughout the water column (0 to ∼200 m), with no evidence of a hypoxic boundary due to the intense mixing near the sill. In particular, turbulence measurements taken near the sill indicated high dissipation rates of turbulent kinetic energy (ε∼10-5 W kg−1) and vertical diapycnal eddy diffusivity (Kρ∼10-3 m2 s−1). The elevated vertical mixing ensures that the water column is well oxygenated (3–6 mL L−1, 60 %–80 % saturation), creating a suitable environment for macrozooplankton and fish aggregations. Turbulence induced by tidal flow over the sill apparently enhances the interchange of nutrients and oxygen concentrations with the surface layer, creating a productive environment for many marine species, where the prey–predator relationship might be favored.</description><subject>Abundance</subject><subject>Acoustic Doppler Current Profiler</subject><subject>Aggregation</subject><subject>Analysis</subject><subject>Backscattering</subject><subject>Boundary layers</subject><subject>Density stratification</subject><subject>Doppler sonar</subject><subject>Echoes</subject><subject>Echosounders</subject><subject>Ecological aggregations</subject><subject>Ecological research</subject><subject>Eddy diffusion</subject><subject>Eddy diffusivity</subject><subject>Environmental aspects</subject><subject>Fish</subject><subject>Fjords</subject><subject>Fluid dynamics</subject><subject>Hypoxia</subject><subject>Kinetic energy</subject><subject>Marine plankton</subject><subject>Mineral nutrients</subject><subject>Mooring</subject><subject>Nutrients</subject><subject>Oxygen</subject><subject>Physical properties</subject><subject>Plankton</subject><subject>Population density</subject><subject>Predators</subject><subject>Prey</subject><subject>Profiles</subject><subject>Scattering layers</subject><subject>Stratification</subject><subject>Surface boundary layer</subject><subject>Surface layers</subject><subject>Tidal currents</subject><subject>Tidal flow</subject><subject>Turbulence</subject><subject>Turbulence measurement</subject><subject>Turbulence measurements</subject><subject>Turbulent flow</subject><subject>Turbulent kinetic energy</subject><subject>Turbulent mixing</subject><subject>Vertical distribution</subject><subject>Vertical migration</subject><subject>Vertical migrations</subject><subject>Vertical mixing</subject><subject>Water column</subject><issn>1812-0792</issn><issn>1812-0784</issn><issn>1812-0792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks2LFDEQxRtRcF09ew148tC7-eh00sdl8WNgYUXXc6gk1W2GnmRM0rDz39vjyOqA5FDh8atHJfWa5i2jV5IN3XUqLetaxrRsOWX6WXPBNOMtVQN__s_9ZfOqlC2lHeOCXTT-Ycl2mTE6JBA9-XHYp8cAxKVYc7BLRVIT8RgLEhvSnKbgYCbFQa2YQ5zIDAfMhYRIgHyBClOKASIZtyl7Ug6l4u5182KEueCbP_Wy-f7xw8Pt5_bu_tPm9uaudZ1StdVeSI1IAZVVAnrXoRQOemUB7cC5HpXtpRbacYoUexAcUEtvqeSDQCoum83J1yfYmn0OO8gHkyCY30LKk4Fcg5vR2N53epCMMQsdlWhH8NwLK9GBBWVXr3cnr31OPxcs1WzTkuM6vuGMKdrTXtG_1ASraYhjqhncLhRnbqRUkkvJ2Upd_Ydaj8ddWH8ax7DqZw3vzxqO28DHOsFSitl8-3rOXp9Yl1MpGcenhzNqjskwqRjWmWMyzDEZ4hdqN6sx</recordid><startdate>20181009</startdate><enddate>20181009</enddate><creator>Perez-Santos, Ivan</creator><creator>Castro, Leonardo</creator><creator>Ross, Lauren</creator><creator>Niklitschek, Edwin</creator><creator>Mayorga, Nicolas</creator><creator>Cubillos, Luis</creator><creator>Gutierrez, Mariano</creator><creator>Escalona, Eduardo</creator><creator>Castillo, Manuel</creator><creator>Alegría, Nicolás</creator><creator>Daneri, Giovanni</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H99</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5561-3494</orcidid><orcidid>https://orcid.org/0000-0003-0641-3722</orcidid><orcidid>https://orcid.org/0000-0003-3984-8837</orcidid></search><sort><creationdate>20181009</creationdate><title>Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system</title><author>Perez-Santos, Ivan ; Castro, Leonardo ; Ross, Lauren ; Niklitschek, Edwin ; Mayorga, Nicolas ; Cubillos, Luis ; Gutierrez, Mariano ; Escalona, Eduardo ; Castillo, Manuel ; Alegría, Nicolás ; Daneri, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abundance</topic><topic>Acoustic Doppler Current Profiler</topic><topic>Aggregation</topic><topic>Analysis</topic><topic>Backscattering</topic><topic>Boundary layers</topic><topic>Density stratification</topic><topic>Doppler sonar</topic><topic>Echoes</topic><topic>Echosounders</topic><topic>Ecological aggregations</topic><topic>Ecological research</topic><topic>Eddy diffusion</topic><topic>Eddy diffusivity</topic><topic>Environmental aspects</topic><topic>Fish</topic><topic>Fjords</topic><topic>Fluid dynamics</topic><topic>Hypoxia</topic><topic>Kinetic energy</topic><topic>Marine plankton</topic><topic>Mineral nutrients</topic><topic>Mooring</topic><topic>Nutrients</topic><topic>Oxygen</topic><topic>Physical properties</topic><topic>Plankton</topic><topic>Population density</topic><topic>Predators</topic><topic>Prey</topic><topic>Profiles</topic><topic>Scattering layers</topic><topic>Stratification</topic><topic>Surface boundary layer</topic><topic>Surface layers</topic><topic>Tidal currents</topic><topic>Tidal flow</topic><topic>Turbulence</topic><topic>Turbulence measurement</topic><topic>Turbulence measurements</topic><topic>Turbulent flow</topic><topic>Turbulent kinetic energy</topic><topic>Turbulent mixing</topic><topic>Vertical distribution</topic><topic>Vertical migration</topic><topic>Vertical migrations</topic><topic>Vertical mixing</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez-Santos, Ivan</creatorcontrib><creatorcontrib>Castro, Leonardo</creatorcontrib><creatorcontrib>Ross, Lauren</creatorcontrib><creatorcontrib>Niklitschek, Edwin</creatorcontrib><creatorcontrib>Mayorga, Nicolas</creatorcontrib><creatorcontrib>Cubillos, Luis</creatorcontrib><creatorcontrib>Gutierrez, Mariano</creatorcontrib><creatorcontrib>Escalona, Eduardo</creatorcontrib><creatorcontrib>Castillo, Manuel</creatorcontrib><creatorcontrib>Alegría, Nicolás</creatorcontrib><creatorcontrib>Daneri, Giovanni</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Continental Europe Database</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Ocean science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez-Santos, Ivan</au><au>Castro, Leonardo</au><au>Ross, Lauren</au><au>Niklitschek, Edwin</au><au>Mayorga, Nicolas</au><au>Cubillos, Luis</au><au>Gutierrez, Mariano</au><au>Escalona, Eduardo</au><au>Castillo, Manuel</au><au>Alegría, Nicolás</au><au>Daneri, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system</atitle><jtitle>Ocean science</jtitle><date>2018-10-09</date><risdate>2018</risdate><volume>14</volume><issue>5</issue><spage>1185</spage><epage>1206</epage><pages>1185-1206</pages><issn>1812-0792</issn><issn>1812-0784</issn><eissn>1812-0792</eissn><abstract>The aggregation of plankton species along fjords can be linked to physical properties and processes such as stratification, turbulence and oxygen concentration. The goal of this study is to determine how water column properties and turbulent mixing affect the horizontal and vertical distributions of macrozooplankton along the only northern Patagonian fjord known to date, where hypoxic conditions occur in the water column. Acoustic Doppler current profiler moorings, scientific echo-sounder transects and in situ plankton abundance measurements were used to study macrozooplankton assemblages and migration patterns along Puyuhuapi Fjord and Jacaf Channel in Chilean Patagonia. The dissipation of turbulent kinetic energy was quantified through vertical microstructure profiles collected throughout time in areas with high macrozooplankton concentrations. The acoustic records and in situ macrozooplankton data revealed diel vertical migrations (DVM) of siphonophores, chaetognaths and euphausiids. In particular, a dense biological backscattering layer was observed along Puyuhuapi Fjord between the surface and the top of the hypoxic boundary layer (∼100 m), which limited the vertical distribution of most macrozooplankton and their DVM, generating a significant reduction of habitat. Aggregations of macrozooplankton and fishes were most abundant around a submarine sill in Jacaf Channel. In this location macrozooplankton were distributed throughout the water column (0 to ∼200 m), with no evidence of a hypoxic boundary due to the intense mixing near the sill. In particular, turbulence measurements taken near the sill indicated high dissipation rates of turbulent kinetic energy (ε∼10-5 W kg−1) and vertical diapycnal eddy diffusivity (Kρ∼10-3 m2 s−1). The elevated vertical mixing ensures that the water column is well oxygenated (3–6 mL L−1, 60 %–80 % saturation), creating a suitable environment for macrozooplankton and fish aggregations. Turbulence induced by tidal flow over the sill apparently enhances the interchange of nutrients and oxygen concentrations with the surface layer, creating a productive environment for many marine species, where the prey–predator relationship might be favored.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/os-14-1185-2018</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5561-3494</orcidid><orcidid>https://orcid.org/0000-0003-0641-3722</orcidid><orcidid>https://orcid.org/0000-0003-3984-8837</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1812-0792
ispartof Ocean science, 2018-10, Vol.14 (5), p.1185-1206
issn 1812-0792
1812-0784
1812-0792
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b6d4895111ba405ebfad2d3b5ecaba7b
source Publicly Available Content Database; IngentaConnect Journals
subjects Abundance
Acoustic Doppler Current Profiler
Aggregation
Analysis
Backscattering
Boundary layers
Density stratification
Doppler sonar
Echoes
Echosounders
Ecological aggregations
Ecological research
Eddy diffusion
Eddy diffusivity
Environmental aspects
Fish
Fjords
Fluid dynamics
Hypoxia
Kinetic energy
Marine plankton
Mineral nutrients
Mooring
Nutrients
Oxygen
Physical properties
Plankton
Population density
Predators
Prey
Profiles
Scattering layers
Stratification
Surface boundary layer
Surface layers
Tidal currents
Tidal flow
Turbulence
Turbulence measurement
Turbulence measurements
Turbulent flow
Turbulent kinetic energy
Turbulent mixing
Vertical distribution
Vertical migration
Vertical migrations
Vertical mixing
Water column
title Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20and%20hypoxia%20contribute%20to%20dense%20biological%20scattering%20layers%20in%20a%20Patagonian%20fjord%20system&rft.jtitle=Ocean%20science&rft.au=Perez-Santos,%20Ivan&rft.date=2018-10-09&rft.volume=14&rft.issue=5&rft.spage=1185&rft.epage=1206&rft.pages=1185-1206&rft.issn=1812-0792&rft.eissn=1812-0792&rft_id=info:doi/10.5194/os-14-1185-2018&rft_dat=%3Cgale_doaj_%3EA557525521%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-8d358ee0ae7b73a6c4e53ca67baeb9228f7b65838c20e0e6a32ae85db05293e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117060670&rft_id=info:pmid/&rft_galeid=A557525521&rfr_iscdi=true