Loading…
The NE/AAT/CBG axis regulates adipose tissue glucocorticoid exposure
Corticosteroid binding globulin (CBG; SERPINA6 ) binds >85% of circulating glucocorticoids but its influence on their metabolic actions is unproven. Targeted proteolytic cleavage of CBG by neutrophil elastase (NE; ELANE ) significantly reduces CBG binding affinity, potentially increasing ‘free’ g...
Saved in:
Published in: | Nature communications 2025-01, Vol.16 (1), p.545-16, Article 545 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c281x-af6b83aef609cfe32db2e581a360be812e705e23b62c4e4cd328748594c1a8bc3 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 545 |
container_title | Nature communications |
container_volume | 16 |
creator | Boyle, Luke D. Miguelez-Crespo, Allende Paul, Mhairi Villalobos, Elisa Toews, Julia N. C. Ivatt, Lisa Nagy, Boglarka Magennis, Marisa Homer, Natalie Z. M. Andrew, Ruth Viau, Victor Hammond, Geoffrey L. Stimson, Roland H. Walker, Brian R. Nixon, Mark |
description | Corticosteroid binding globulin (CBG;
SERPINA6
) binds >85% of circulating glucocorticoids but its influence on their metabolic actions is unproven. Targeted proteolytic cleavage of CBG by neutrophil elastase (NE;
ELANE
) significantly reduces CBG binding affinity, potentially increasing ‘free’ glucocorticoid levels at sites of inflammation. NE is inhibited by alpha-1-antitrypsin (AAT;
SERPINA1
). Using complementary approaches in mice and humans to manipulate NE or AAT, we show high-fat diet (HFD) increases the NE:AAT ratio specifically in murine visceral adipose tissue, an effect only observed in males. Notably, HFD-fed male mice lacking NE have reduced glucocorticoid levels and action specifically in visceral adipose tissue, with improved glucose tolerance and insulin sensitivity, independent of systemic changes in free glucocorticoids. The protective effect of NE deficiency is lost when the adrenals are removed. Moreover, human asymptomatic heterozygous carriers of deleterious mutations in
SERPINA1
resulting in lower AAT levels have increased adipose tissue glucocorticoid levels and action. However, in contrast to mice, humans present with systemic increases in free circulating glucocorticoid levels, an effect independent of HPA axis activation. These findings show that NE and AAT regulate local tissue glucocorticoid bioavailability in vivo, providing crucial evidence of a mechanism linking inflammation and metabolism.
Corticosteroid binding globulin modulates circulating glucocorticoids, but its metabolic implications remain unclear. Here, the authors show that CBG regulators neutrophil elastase and alpha-1-antitrypsin control glucocorticoid bioavailability in adipose tissue, linking obesity and inflammation to metabolic outcomes in a sex-specific manner in mice and revealing parallels with human carriers of deleterious
SERPINA1
mutations. |
doi_str_mv | 10.1038/s41467-024-55693-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b6ebce32ea9d41629746451c69dbb25b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b6ebce32ea9d41629746451c69dbb25b</doaj_id><sourcerecordid>3153336910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281x-af6b83aef609cfe32db2e581a360be812e705e23b62c4e4cd328748594c1a8bc3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EAlT4ARYoEhs2oX7FsZelPCUEm7K2bGdSUqV1sRsp_D2m4SUWzMbWzJk7Y1-ETgi-IJjJceSEizLHlOdFIRTL-x10SDEnOSkp2_11P0DHMS5wCqaI5HwfHTBVSqm4OERXsxfIHq_Hk8lsPL28zUzfxCzAvGvNBmJmqmbtI2SbJsYOsnnbOe982DTON1UGfSp2AY7QXm3aCMef5wg931zPpnf5w9Pt_XTykDsqSZ-bWljJDNQCK1cDo5WlUEhimMAWJKFQ4gIos4I6DtxVjMqSy0JxR4y0jo3Q_aBbebPQ69AsTXjT3jR6m_Bhrs3Hbi1oK8C6NAKMqjgRVJVc8II4oSpraWGT1vmgtQ7-tYO40csmOmhbswLfRc1Ikb5LpEjo2R904buwSi_dUowJlSwZITpQLvgYA9TfCxKsPyzTg2U6Waa3luk-NZ1-Snd2CdV3y5dBCWADEFNpNYfwM_sf2XcQ8aAL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153336910</pqid></control><display><type>article</type><title>The NE/AAT/CBG axis regulates adipose tissue glucocorticoid exposure</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Boyle, Luke D. ; Miguelez-Crespo, Allende ; Paul, Mhairi ; Villalobos, Elisa ; Toews, Julia N. C. ; Ivatt, Lisa ; Nagy, Boglarka ; Magennis, Marisa ; Homer, Natalie Z. M. ; Andrew, Ruth ; Viau, Victor ; Hammond, Geoffrey L. ; Stimson, Roland H. ; Walker, Brian R. ; Nixon, Mark</creator><creatorcontrib>Boyle, Luke D. ; Miguelez-Crespo, Allende ; Paul, Mhairi ; Villalobos, Elisa ; Toews, Julia N. C. ; Ivatt, Lisa ; Nagy, Boglarka ; Magennis, Marisa ; Homer, Natalie Z. M. ; Andrew, Ruth ; Viau, Victor ; Hammond, Geoffrey L. ; Stimson, Roland H. ; Walker, Brian R. ; Nixon, Mark</creatorcontrib><description>Corticosteroid binding globulin (CBG;
SERPINA6
) binds >85% of circulating glucocorticoids but its influence on their metabolic actions is unproven. Targeted proteolytic cleavage of CBG by neutrophil elastase (NE;
ELANE
) significantly reduces CBG binding affinity, potentially increasing ‘free’ glucocorticoid levels at sites of inflammation. NE is inhibited by alpha-1-antitrypsin (AAT;
SERPINA1
). Using complementary approaches in mice and humans to manipulate NE or AAT, we show high-fat diet (HFD) increases the NE:AAT ratio specifically in murine visceral adipose tissue, an effect only observed in males. Notably, HFD-fed male mice lacking NE have reduced glucocorticoid levels and action specifically in visceral adipose tissue, with improved glucose tolerance and insulin sensitivity, independent of systemic changes in free glucocorticoids. The protective effect of NE deficiency is lost when the adrenals are removed. Moreover, human asymptomatic heterozygous carriers of deleterious mutations in
SERPINA1
resulting in lower AAT levels have increased adipose tissue glucocorticoid levels and action. However, in contrast to mice, humans present with systemic increases in free circulating glucocorticoid levels, an effect independent of HPA axis activation. These findings show that NE and AAT regulate local tissue glucocorticoid bioavailability in vivo, providing crucial evidence of a mechanism linking inflammation and metabolism.
Corticosteroid binding globulin modulates circulating glucocorticoids, but its metabolic implications remain unclear. Here, the authors show that CBG regulators neutrophil elastase and alpha-1-antitrypsin control glucocorticoid bioavailability in adipose tissue, linking obesity and inflammation to metabolic outcomes in a sex-specific manner in mice and revealing parallels with human carriers of deleterious
SERPINA1
mutations.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-55693-x</identifier><identifier>PMID: 39788946</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/77 ; 45/88 ; 45/90 ; 631/443/319/1557 ; 631/443/319/1642 ; 631/443/319/2723 ; 64/110 ; 82/58 ; Adipose tissue ; Adipose Tissue - metabolism ; Adult ; alpha 1-Antitrypsin - genetics ; alpha 1-Antitrypsin - metabolism ; Animals ; Binding ; Bioavailability ; Body fat ; Circulation ; Diet, High-Fat ; Elastase ; Female ; Globulins ; Glucocorticoids ; Glucocorticoids - metabolism ; Glucose tolerance ; High fat diet ; Humanities and Social Sciences ; Humans ; Hypothalamic-pituitary-adrenal axis ; Inflammation ; Insulin Resistance ; Intra-Abdominal Fat - metabolism ; Leukocyte Elastase - genetics ; Leukocyte Elastase - metabolism ; Leukocytes (neutrophilic) ; Male ; Metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Middle Aged ; multidisciplinary ; Mutation ; Neutrophils ; Proteolysis ; Science ; Science (multidisciplinary) ; Steroids ; Transcortin - genetics ; Transcortin - metabolism</subject><ispartof>Nature communications, 2025-01, Vol.16 (1), p.545-16, Article 545</ispartof><rights>The Author(s) 2025</rights><rights>2025. The Author(s).</rights><rights>Copyright Nature Publishing Group 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281x-af6b83aef609cfe32db2e581a360be812e705e23b62c4e4cd328748594c1a8bc3</cites><orcidid>0000-0002-6916-2994 ; 0000-0001-5437-3724 ; 0000-0002-5542-2521 ; 0000-0002-9002-6188 ; 0000-0001-7094-1701 ; 0000-0003-3949-0337 ; 0000-0002-9262-2098 ; 0000-0002-2416-1648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3153336910/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3153336910?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39788946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boyle, Luke D.</creatorcontrib><creatorcontrib>Miguelez-Crespo, Allende</creatorcontrib><creatorcontrib>Paul, Mhairi</creatorcontrib><creatorcontrib>Villalobos, Elisa</creatorcontrib><creatorcontrib>Toews, Julia N. C.</creatorcontrib><creatorcontrib>Ivatt, Lisa</creatorcontrib><creatorcontrib>Nagy, Boglarka</creatorcontrib><creatorcontrib>Magennis, Marisa</creatorcontrib><creatorcontrib>Homer, Natalie Z. M.</creatorcontrib><creatorcontrib>Andrew, Ruth</creatorcontrib><creatorcontrib>Viau, Victor</creatorcontrib><creatorcontrib>Hammond, Geoffrey L.</creatorcontrib><creatorcontrib>Stimson, Roland H.</creatorcontrib><creatorcontrib>Walker, Brian R.</creatorcontrib><creatorcontrib>Nixon, Mark</creatorcontrib><title>The NE/AAT/CBG axis regulates adipose tissue glucocorticoid exposure</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Corticosteroid binding globulin (CBG;
SERPINA6
) binds >85% of circulating glucocorticoids but its influence on their metabolic actions is unproven. Targeted proteolytic cleavage of CBG by neutrophil elastase (NE;
ELANE
) significantly reduces CBG binding affinity, potentially increasing ‘free’ glucocorticoid levels at sites of inflammation. NE is inhibited by alpha-1-antitrypsin (AAT;
SERPINA1
). Using complementary approaches in mice and humans to manipulate NE or AAT, we show high-fat diet (HFD) increases the NE:AAT ratio specifically in murine visceral adipose tissue, an effect only observed in males. Notably, HFD-fed male mice lacking NE have reduced glucocorticoid levels and action specifically in visceral adipose tissue, with improved glucose tolerance and insulin sensitivity, independent of systemic changes in free glucocorticoids. The protective effect of NE deficiency is lost when the adrenals are removed. Moreover, human asymptomatic heterozygous carriers of deleterious mutations in
SERPINA1
resulting in lower AAT levels have increased adipose tissue glucocorticoid levels and action. However, in contrast to mice, humans present with systemic increases in free circulating glucocorticoid levels, an effect independent of HPA axis activation. These findings show that NE and AAT regulate local tissue glucocorticoid bioavailability in vivo, providing crucial evidence of a mechanism linking inflammation and metabolism.
Corticosteroid binding globulin modulates circulating glucocorticoids, but its metabolic implications remain unclear. Here, the authors show that CBG regulators neutrophil elastase and alpha-1-antitrypsin control glucocorticoid bioavailability in adipose tissue, linking obesity and inflammation to metabolic outcomes in a sex-specific manner in mice and revealing parallels with human carriers of deleterious
SERPINA1
mutations.</description><subject>45/77</subject><subject>45/88</subject><subject>45/90</subject><subject>631/443/319/1557</subject><subject>631/443/319/1642</subject><subject>631/443/319/2723</subject><subject>64/110</subject><subject>82/58</subject><subject>Adipose tissue</subject><subject>Adipose Tissue - metabolism</subject><subject>Adult</subject><subject>alpha 1-Antitrypsin - genetics</subject><subject>alpha 1-Antitrypsin - metabolism</subject><subject>Animals</subject><subject>Binding</subject><subject>Bioavailability</subject><subject>Body fat</subject><subject>Circulation</subject><subject>Diet, High-Fat</subject><subject>Elastase</subject><subject>Female</subject><subject>Globulins</subject><subject>Glucocorticoids</subject><subject>Glucocorticoids - metabolism</subject><subject>Glucose tolerance</subject><subject>High fat diet</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypothalamic-pituitary-adrenal axis</subject><subject>Inflammation</subject><subject>Insulin Resistance</subject><subject>Intra-Abdominal Fat - metabolism</subject><subject>Leukocyte Elastase - genetics</subject><subject>Leukocyte Elastase - metabolism</subject><subject>Leukocytes (neutrophilic)</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neutrophils</subject><subject>Proteolysis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Steroids</subject><subject>Transcortin - genetics</subject><subject>Transcortin - metabolism</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctOwzAQRS0EAlT4ARYoEhs2oX7FsZelPCUEm7K2bGdSUqV1sRsp_D2m4SUWzMbWzJk7Y1-ETgi-IJjJceSEizLHlOdFIRTL-x10SDEnOSkp2_11P0DHMS5wCqaI5HwfHTBVSqm4OERXsxfIHq_Hk8lsPL28zUzfxCzAvGvNBmJmqmbtI2SbJsYOsnnbOe982DTON1UGfSp2AY7QXm3aCMef5wg931zPpnf5w9Pt_XTykDsqSZ-bWljJDNQCK1cDo5WlUEhimMAWJKFQ4gIos4I6DtxVjMqSy0JxR4y0jo3Q_aBbebPQ69AsTXjT3jR6m_Bhrs3Hbi1oK8C6NAKMqjgRVJVc8II4oSpraWGT1vmgtQ7-tYO40csmOmhbswLfRc1Ikb5LpEjo2R904buwSi_dUowJlSwZITpQLvgYA9TfCxKsPyzTg2U6Waa3luk-NZ1-Snd2CdV3y5dBCWADEFNpNYfwM_sf2XcQ8aAL</recordid><startdate>20250109</startdate><enddate>20250109</enddate><creator>Boyle, Luke D.</creator><creator>Miguelez-Crespo, Allende</creator><creator>Paul, Mhairi</creator><creator>Villalobos, Elisa</creator><creator>Toews, Julia N. C.</creator><creator>Ivatt, Lisa</creator><creator>Nagy, Boglarka</creator><creator>Magennis, Marisa</creator><creator>Homer, Natalie Z. M.</creator><creator>Andrew, Ruth</creator><creator>Viau, Victor</creator><creator>Hammond, Geoffrey L.</creator><creator>Stimson, Roland H.</creator><creator>Walker, Brian R.</creator><creator>Nixon, Mark</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6916-2994</orcidid><orcidid>https://orcid.org/0000-0001-5437-3724</orcidid><orcidid>https://orcid.org/0000-0002-5542-2521</orcidid><orcidid>https://orcid.org/0000-0002-9002-6188</orcidid><orcidid>https://orcid.org/0000-0001-7094-1701</orcidid><orcidid>https://orcid.org/0000-0003-3949-0337</orcidid><orcidid>https://orcid.org/0000-0002-9262-2098</orcidid><orcidid>https://orcid.org/0000-0002-2416-1648</orcidid></search><sort><creationdate>20250109</creationdate><title>The NE/AAT/CBG axis regulates adipose tissue glucocorticoid exposure</title><author>Boyle, Luke D. ; Miguelez-Crespo, Allende ; Paul, Mhairi ; Villalobos, Elisa ; Toews, Julia N. C. ; Ivatt, Lisa ; Nagy, Boglarka ; Magennis, Marisa ; Homer, Natalie Z. M. ; Andrew, Ruth ; Viau, Victor ; Hammond, Geoffrey L. ; Stimson, Roland H. ; Walker, Brian R. ; Nixon, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281x-af6b83aef609cfe32db2e581a360be812e705e23b62c4e4cd328748594c1a8bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>45/77</topic><topic>45/88</topic><topic>45/90</topic><topic>631/443/319/1557</topic><topic>631/443/319/1642</topic><topic>631/443/319/2723</topic><topic>64/110</topic><topic>82/58</topic><topic>Adipose tissue</topic><topic>Adipose Tissue - metabolism</topic><topic>Adult</topic><topic>alpha 1-Antitrypsin - genetics</topic><topic>alpha 1-Antitrypsin - metabolism</topic><topic>Animals</topic><topic>Binding</topic><topic>Bioavailability</topic><topic>Body fat</topic><topic>Circulation</topic><topic>Diet, High-Fat</topic><topic>Elastase</topic><topic>Female</topic><topic>Globulins</topic><topic>Glucocorticoids</topic><topic>Glucocorticoids - metabolism</topic><topic>Glucose tolerance</topic><topic>High fat diet</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypothalamic-pituitary-adrenal axis</topic><topic>Inflammation</topic><topic>Insulin Resistance</topic><topic>Intra-Abdominal Fat - metabolism</topic><topic>Leukocyte Elastase - genetics</topic><topic>Leukocyte Elastase - metabolism</topic><topic>Leukocytes (neutrophilic)</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neutrophils</topic><topic>Proteolysis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Steroids</topic><topic>Transcortin - genetics</topic><topic>Transcortin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyle, Luke D.</creatorcontrib><creatorcontrib>Miguelez-Crespo, Allende</creatorcontrib><creatorcontrib>Paul, Mhairi</creatorcontrib><creatorcontrib>Villalobos, Elisa</creatorcontrib><creatorcontrib>Toews, Julia N. C.</creatorcontrib><creatorcontrib>Ivatt, Lisa</creatorcontrib><creatorcontrib>Nagy, Boglarka</creatorcontrib><creatorcontrib>Magennis, Marisa</creatorcontrib><creatorcontrib>Homer, Natalie Z. M.</creatorcontrib><creatorcontrib>Andrew, Ruth</creatorcontrib><creatorcontrib>Viau, Victor</creatorcontrib><creatorcontrib>Hammond, Geoffrey L.</creatorcontrib><creatorcontrib>Stimson, Roland H.</creatorcontrib><creatorcontrib>Walker, Brian R.</creatorcontrib><creatorcontrib>Nixon, Mark</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyle, Luke D.</au><au>Miguelez-Crespo, Allende</au><au>Paul, Mhairi</au><au>Villalobos, Elisa</au><au>Toews, Julia N. C.</au><au>Ivatt, Lisa</au><au>Nagy, Boglarka</au><au>Magennis, Marisa</au><au>Homer, Natalie Z. M.</au><au>Andrew, Ruth</au><au>Viau, Victor</au><au>Hammond, Geoffrey L.</au><au>Stimson, Roland H.</au><au>Walker, Brian R.</au><au>Nixon, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The NE/AAT/CBG axis regulates adipose tissue glucocorticoid exposure</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2025-01-09</date><risdate>2025</risdate><volume>16</volume><issue>1</issue><spage>545</spage><epage>16</epage><pages>545-16</pages><artnum>545</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Corticosteroid binding globulin (CBG;
SERPINA6
) binds >85% of circulating glucocorticoids but its influence on their metabolic actions is unproven. Targeted proteolytic cleavage of CBG by neutrophil elastase (NE;
ELANE
) significantly reduces CBG binding affinity, potentially increasing ‘free’ glucocorticoid levels at sites of inflammation. NE is inhibited by alpha-1-antitrypsin (AAT;
SERPINA1
). Using complementary approaches in mice and humans to manipulate NE or AAT, we show high-fat diet (HFD) increases the NE:AAT ratio specifically in murine visceral adipose tissue, an effect only observed in males. Notably, HFD-fed male mice lacking NE have reduced glucocorticoid levels and action specifically in visceral adipose tissue, with improved glucose tolerance and insulin sensitivity, independent of systemic changes in free glucocorticoids. The protective effect of NE deficiency is lost when the adrenals are removed. Moreover, human asymptomatic heterozygous carriers of deleterious mutations in
SERPINA1
resulting in lower AAT levels have increased adipose tissue glucocorticoid levels and action. However, in contrast to mice, humans present with systemic increases in free circulating glucocorticoid levels, an effect independent of HPA axis activation. These findings show that NE and AAT regulate local tissue glucocorticoid bioavailability in vivo, providing crucial evidence of a mechanism linking inflammation and metabolism.
Corticosteroid binding globulin modulates circulating glucocorticoids, but its metabolic implications remain unclear. Here, the authors show that CBG regulators neutrophil elastase and alpha-1-antitrypsin control glucocorticoid bioavailability in adipose tissue, linking obesity and inflammation to metabolic outcomes in a sex-specific manner in mice and revealing parallels with human carriers of deleterious
SERPINA1
mutations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39788946</pmid><doi>10.1038/s41467-024-55693-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6916-2994</orcidid><orcidid>https://orcid.org/0000-0001-5437-3724</orcidid><orcidid>https://orcid.org/0000-0002-5542-2521</orcidid><orcidid>https://orcid.org/0000-0002-9002-6188</orcidid><orcidid>https://orcid.org/0000-0001-7094-1701</orcidid><orcidid>https://orcid.org/0000-0003-3949-0337</orcidid><orcidid>https://orcid.org/0000-0002-9262-2098</orcidid><orcidid>https://orcid.org/0000-0002-2416-1648</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2025-01, Vol.16 (1), p.545-16, Article 545 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b6ebce32ea9d41629746451c69dbb25b |
source | Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 45/77 45/88 45/90 631/443/319/1557 631/443/319/1642 631/443/319/2723 64/110 82/58 Adipose tissue Adipose Tissue - metabolism Adult alpha 1-Antitrypsin - genetics alpha 1-Antitrypsin - metabolism Animals Binding Bioavailability Body fat Circulation Diet, High-Fat Elastase Female Globulins Glucocorticoids Glucocorticoids - metabolism Glucose tolerance High fat diet Humanities and Social Sciences Humans Hypothalamic-pituitary-adrenal axis Inflammation Insulin Resistance Intra-Abdominal Fat - metabolism Leukocyte Elastase - genetics Leukocyte Elastase - metabolism Leukocytes (neutrophilic) Male Metabolism Mice Mice, Inbred C57BL Mice, Knockout Middle Aged multidisciplinary Mutation Neutrophils Proteolysis Science Science (multidisciplinary) Steroids Transcortin - genetics Transcortin - metabolism |
title | The NE/AAT/CBG axis regulates adipose tissue glucocorticoid exposure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20NE/AAT/CBG%20axis%20regulates%20adipose%20tissue%20glucocorticoid%20exposure&rft.jtitle=Nature%20communications&rft.au=Boyle,%20Luke%20D.&rft.date=2025-01-09&rft.volume=16&rft.issue=1&rft.spage=545&rft.epage=16&rft.pages=545-16&rft.artnum=545&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-55693-x&rft_dat=%3Cproquest_doaj_%3E3153336910%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281x-af6b83aef609cfe32db2e581a360be812e705e23b62c4e4cd328748594c1a8bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153336910&rft_id=info:pmid/39788946&rfr_iscdi=true |