Loading…

On the three-dimensional spatial correlations of curved dislocation systems

Coarse-grained descriptions of dislocation motion in crystalline metals inherently represent a loss of information regarding dislocation-dislocation interactions. In the present work, we consider a coarse-graining framework capable of re-capturing these interactions by means of the dislocation-dislo...

Full description

Saved in:
Bibliographic Details
Published in:Materials theory 2021-03, Vol.5 (1), p.1-34, Article 1
Main Authors: Anderson, Joseph Pierre, El-Azab, Anter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293
cites cdi_FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293
container_end_page 34
container_issue 1
container_start_page 1
container_title Materials theory
container_volume 5
creator Anderson, Joseph Pierre
El-Azab, Anter
description Coarse-grained descriptions of dislocation motion in crystalline metals inherently represent a loss of information regarding dislocation-dislocation interactions. In the present work, we consider a coarse-graining framework capable of re-capturing these interactions by means of the dislocation-dislocation correlation functions. The framework depends on a convolution length to define slip-system-specific dislocation densities. Following a statistical definition of this coarse-graining process, we define a spatial correlation function which will allow the arrangement of the discrete line system at two points—and thus the strength of their interactions at short range—to be recaptured into a mean field description of dislocation dynamics. Through a statistical homogeneity argument, we present a method of evaluating this correlation function from discrete dislocation dynamics simulations. Finally, results of this evaluation are shown in the form of the correlation of dislocation densities on the same slip-system. These correlation functions are seen to depend weakly on plastic strain, and in turn, the dislocation density, but are seen to depend strongly on the convolution length. Implications of these correlation functions in regard to continuum dislocation dynamics as well as future directions of investigation are also discussed.
doi_str_mv 10.1186/s41313-020-00026-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b717fbefae5e48acb89e38f83fd58528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b717fbefae5e48acb89e38f83fd58528</doaj_id><sourcerecordid>2499378238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhkcIJKq2f4DTCM4D-ZwkR1TxUVGpFzhH3sRps5qdLPEsq_57sjsIeuJg2bLe95Hlt-vecPaeczt-IMUllwMTbGCMiXE4vuguhGZusIyLl8_m19010fYkMk4qIy66b_dzvzxiq4o4xLzDmXKZYeppD0tuPZRacWpzmakvqQ-H-gtjHzNNJZzXPT3Rgju66l4lmAiv__TL7sfnT99vvg53919ubz7eDUEadRwQeXQQJABDZnRMGjTqUQdunQKIPHABTqHejDw5Lk3agDYaxwjKBeHkZXe7cmOBrd_XvIP65Atkf16U-uChLjlM6DeGNzsmQI3KQthYh9ImK1PUVgvbWG9XVqElewp5wfAYyjxjWDw3hgmhmujdKtrX8vOAtPhtOdT2JPJCOSeNFfKEEqsq1EJUMf09jTN_CsqvQfkWlD8H5Y_NJFcTNfH8gPUf-j-u36ORlvQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499378238</pqid></control><display><type>article</type><title>On the three-dimensional spatial correlations of curved dislocation systems</title><source>Publicly Available Content Database</source><creator>Anderson, Joseph Pierre ; El-Azab, Anter</creator><creatorcontrib>Anderson, Joseph Pierre ; El-Azab, Anter</creatorcontrib><description>Coarse-grained descriptions of dislocation motion in crystalline metals inherently represent a loss of information regarding dislocation-dislocation interactions. In the present work, we consider a coarse-graining framework capable of re-capturing these interactions by means of the dislocation-dislocation correlation functions. The framework depends on a convolution length to define slip-system-specific dislocation densities. Following a statistical definition of this coarse-graining process, we define a spatial correlation function which will allow the arrangement of the discrete line system at two points—and thus the strength of their interactions at short range—to be recaptured into a mean field description of dislocation dynamics. Through a statistical homogeneity argument, we present a method of evaluating this correlation function from discrete dislocation dynamics simulations. Finally, results of this evaluation are shown in the form of the correlation of dislocation densities on the same slip-system. These correlation functions are seen to depend weakly on plastic strain, and in turn, the dislocation density, but are seen to depend strongly on the convolution length. Implications of these correlation functions in regard to continuum dislocation dynamics as well as future directions of investigation are also discussed.</description><identifier>ISSN: 2509-8012</identifier><identifier>EISSN: 2509-8012</identifier><identifier>DOI: 10.1186/s41313-020-00026-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Characterization and Evaluation of Materials ; Characterization of Dislocation Ensembles: Measures and Complexity ; Chemistry and Materials Science ; Coarse-graining ; Condensed Matter Physics ; Continuum ; Convolution ; Correlation ; Crystal dislocations ; Dislocation ; Dislocation density ; Granulation ; Homogeneity ; Materials Engineering ; Materials Science ; Original Article ; Physical Chemistry ; Plastic deformation ; Slip ; Statistical</subject><ispartof>Materials theory, 2021-03, Vol.5 (1), p.1-34, Article 1</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293</citedby><cites>FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293</cites><orcidid>0000-0003-2976-0903 ; 0000000329760903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2499378238?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1770224$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Joseph Pierre</creatorcontrib><creatorcontrib>El-Azab, Anter</creatorcontrib><title>On the three-dimensional spatial correlations of curved dislocation systems</title><title>Materials theory</title><addtitle>Mater Theory</addtitle><description>Coarse-grained descriptions of dislocation motion in crystalline metals inherently represent a loss of information regarding dislocation-dislocation interactions. In the present work, we consider a coarse-graining framework capable of re-capturing these interactions by means of the dislocation-dislocation correlation functions. The framework depends on a convolution length to define slip-system-specific dislocation densities. Following a statistical definition of this coarse-graining process, we define a spatial correlation function which will allow the arrangement of the discrete line system at two points—and thus the strength of their interactions at short range—to be recaptured into a mean field description of dislocation dynamics. Through a statistical homogeneity argument, we present a method of evaluating this correlation function from discrete dislocation dynamics simulations. Finally, results of this evaluation are shown in the form of the correlation of dislocation densities on the same slip-system. These correlation functions are seen to depend weakly on plastic strain, and in turn, the dislocation density, but are seen to depend strongly on the convolution length. Implications of these correlation functions in regard to continuum dislocation dynamics as well as future directions of investigation are also discussed.</description><subject>Characterization and Evaluation of Materials</subject><subject>Characterization of Dislocation Ensembles: Measures and Complexity</subject><subject>Chemistry and Materials Science</subject><subject>Coarse-graining</subject><subject>Condensed Matter Physics</subject><subject>Continuum</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Crystal dislocations</subject><subject>Dislocation</subject><subject>Dislocation density</subject><subject>Granulation</subject><subject>Homogeneity</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Plastic deformation</subject><subject>Slip</subject><subject>Statistical</subject><issn>2509-8012</issn><issn>2509-8012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1vFDEMhkcIJKq2f4DTCM4D-ZwkR1TxUVGpFzhH3sRps5qdLPEsq_57sjsIeuJg2bLe95Hlt-vecPaeczt-IMUllwMTbGCMiXE4vuguhGZusIyLl8_m19010fYkMk4qIy66b_dzvzxiq4o4xLzDmXKZYeppD0tuPZRacWpzmakvqQ-H-gtjHzNNJZzXPT3Rgju66l4lmAiv__TL7sfnT99vvg53919ubz7eDUEadRwQeXQQJABDZnRMGjTqUQdunQKIPHABTqHejDw5Lk3agDYaxwjKBeHkZXe7cmOBrd_XvIP65Atkf16U-uChLjlM6DeGNzsmQI3KQthYh9ImK1PUVgvbWG9XVqElewp5wfAYyjxjWDw3hgmhmujdKtrX8vOAtPhtOdT2JPJCOSeNFfKEEqsq1EJUMf09jTN_CsqvQfkWlD8H5Y_NJFcTNfH8gPUf-j-u36ORlvQ</recordid><startdate>20210310</startdate><enddate>20210310</enddate><creator>Anderson, Joseph Pierre</creator><creator>El-Azab, Anter</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Science + Business Media</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2976-0903</orcidid><orcidid>https://orcid.org/0000000329760903</orcidid></search><sort><creationdate>20210310</creationdate><title>On the three-dimensional spatial correlations of curved dislocation systems</title><author>Anderson, Joseph Pierre ; El-Azab, Anter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Characterization of Dislocation Ensembles: Measures and Complexity</topic><topic>Chemistry and Materials Science</topic><topic>Coarse-graining</topic><topic>Condensed Matter Physics</topic><topic>Continuum</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Crystal dislocations</topic><topic>Dislocation</topic><topic>Dislocation density</topic><topic>Granulation</topic><topic>Homogeneity</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Plastic deformation</topic><topic>Slip</topic><topic>Statistical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Joseph Pierre</creatorcontrib><creatorcontrib>El-Azab, Anter</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Materials Research Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>Materials theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Joseph Pierre</au><au>El-Azab, Anter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the three-dimensional spatial correlations of curved dislocation systems</atitle><jtitle>Materials theory</jtitle><stitle>Mater Theory</stitle><date>2021-03-10</date><risdate>2021</risdate><volume>5</volume><issue>1</issue><spage>1</spage><epage>34</epage><pages>1-34</pages><artnum>1</artnum><issn>2509-8012</issn><eissn>2509-8012</eissn><abstract>Coarse-grained descriptions of dislocation motion in crystalline metals inherently represent a loss of information regarding dislocation-dislocation interactions. In the present work, we consider a coarse-graining framework capable of re-capturing these interactions by means of the dislocation-dislocation correlation functions. The framework depends on a convolution length to define slip-system-specific dislocation densities. Following a statistical definition of this coarse-graining process, we define a spatial correlation function which will allow the arrangement of the discrete line system at two points—and thus the strength of their interactions at short range—to be recaptured into a mean field description of dislocation dynamics. Through a statistical homogeneity argument, we present a method of evaluating this correlation function from discrete dislocation dynamics simulations. Finally, results of this evaluation are shown in the form of the correlation of dislocation densities on the same slip-system. These correlation functions are seen to depend weakly on plastic strain, and in turn, the dislocation density, but are seen to depend strongly on the convolution length. Implications of these correlation functions in regard to continuum dislocation dynamics as well as future directions of investigation are also discussed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s41313-020-00026-w</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-2976-0903</orcidid><orcidid>https://orcid.org/0000000329760903</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2509-8012
ispartof Materials theory, 2021-03, Vol.5 (1), p.1-34, Article 1
issn 2509-8012
2509-8012
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b717fbefae5e48acb89e38f83fd58528
source Publicly Available Content Database
subjects Characterization and Evaluation of Materials
Characterization of Dislocation Ensembles: Measures and Complexity
Chemistry and Materials Science
Coarse-graining
Condensed Matter Physics
Continuum
Convolution
Correlation
Crystal dislocations
Dislocation
Dislocation density
Granulation
Homogeneity
Materials Engineering
Materials Science
Original Article
Physical Chemistry
Plastic deformation
Slip
Statistical
title On the three-dimensional spatial correlations of curved dislocation systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20three-dimensional%20spatial%20correlations%20of%20curved%20dislocation%20systems&rft.jtitle=Materials%20theory&rft.au=Anderson,%20Joseph%20Pierre&rft.date=2021-03-10&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=34&rft.pages=1-34&rft.artnum=1&rft.issn=2509-8012&rft.eissn=2509-8012&rft_id=info:doi/10.1186/s41313-020-00026-w&rft_dat=%3Cproquest_doaj_%3E2499378238%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499378238&rft_id=info:pmid/&rfr_iscdi=true