Loading…
On the three-dimensional spatial correlations of curved dislocation systems
Coarse-grained descriptions of dislocation motion in crystalline metals inherently represent a loss of information regarding dislocation-dislocation interactions. In the present work, we consider a coarse-graining framework capable of re-capturing these interactions by means of the dislocation-dislo...
Saved in:
Published in: | Materials theory 2021-03, Vol.5 (1), p.1-34, Article 1 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293 |
---|---|
cites | cdi_FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293 |
container_end_page | 34 |
container_issue | 1 |
container_start_page | 1 |
container_title | Materials theory |
container_volume | 5 |
creator | Anderson, Joseph Pierre El-Azab, Anter |
description | Coarse-grained descriptions of dislocation motion in crystalline metals inherently represent a loss of information regarding dislocation-dislocation interactions. In the present work, we consider a coarse-graining framework capable of re-capturing these interactions by means of the dislocation-dislocation correlation functions. The framework depends on a convolution length to define slip-system-specific dislocation densities. Following a statistical definition of this coarse-graining process, we define a spatial correlation function which will allow the arrangement of the discrete line system at two points—and thus the strength of their interactions at short range—to be recaptured into a mean field description of dislocation dynamics. Through a statistical homogeneity argument, we present a method of evaluating this correlation function from discrete dislocation dynamics simulations. Finally, results of this evaluation are shown in the form of the correlation of dislocation densities on the same slip-system. These correlation functions are seen to depend weakly on plastic strain, and in turn, the dislocation density, but are seen to depend strongly on the convolution length. Implications of these correlation functions in regard to continuum dislocation dynamics as well as future directions of investigation are also discussed. |
doi_str_mv | 10.1186/s41313-020-00026-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b717fbefae5e48acb89e38f83fd58528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b717fbefae5e48acb89e38f83fd58528</doaj_id><sourcerecordid>2499378238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhkcIJKq2f4DTCM4D-ZwkR1TxUVGpFzhH3sRps5qdLPEsq_57sjsIeuJg2bLe95Hlt-vecPaeczt-IMUllwMTbGCMiXE4vuguhGZusIyLl8_m19010fYkMk4qIy66b_dzvzxiq4o4xLzDmXKZYeppD0tuPZRacWpzmakvqQ-H-gtjHzNNJZzXPT3Rgju66l4lmAiv__TL7sfnT99vvg53919ubz7eDUEadRwQeXQQJABDZnRMGjTqUQdunQKIPHABTqHejDw5Lk3agDYaxwjKBeHkZXe7cmOBrd_XvIP65Atkf16U-uChLjlM6DeGNzsmQI3KQthYh9ImK1PUVgvbWG9XVqElewp5wfAYyjxjWDw3hgmhmujdKtrX8vOAtPhtOdT2JPJCOSeNFfKEEqsq1EJUMf09jTN_CsqvQfkWlD8H5Y_NJFcTNfH8gPUf-j-u36ORlvQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499378238</pqid></control><display><type>article</type><title>On the three-dimensional spatial correlations of curved dislocation systems</title><source>Publicly Available Content Database</source><creator>Anderson, Joseph Pierre ; El-Azab, Anter</creator><creatorcontrib>Anderson, Joseph Pierre ; El-Azab, Anter</creatorcontrib><description>Coarse-grained descriptions of dislocation motion in crystalline metals inherently represent a loss of information regarding dislocation-dislocation interactions. In the present work, we consider a coarse-graining framework capable of re-capturing these interactions by means of the dislocation-dislocation correlation functions. The framework depends on a convolution length to define slip-system-specific dislocation densities. Following a statistical definition of this coarse-graining process, we define a spatial correlation function which will allow the arrangement of the discrete line system at two points—and thus the strength of their interactions at short range—to be recaptured into a mean field description of dislocation dynamics. Through a statistical homogeneity argument, we present a method of evaluating this correlation function from discrete dislocation dynamics simulations. Finally, results of this evaluation are shown in the form of the correlation of dislocation densities on the same slip-system. These correlation functions are seen to depend weakly on plastic strain, and in turn, the dislocation density, but are seen to depend strongly on the convolution length. Implications of these correlation functions in regard to continuum dislocation dynamics as well as future directions of investigation are also discussed.</description><identifier>ISSN: 2509-8012</identifier><identifier>EISSN: 2509-8012</identifier><identifier>DOI: 10.1186/s41313-020-00026-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Characterization and Evaluation of Materials ; Characterization of Dislocation Ensembles: Measures and Complexity ; Chemistry and Materials Science ; Coarse-graining ; Condensed Matter Physics ; Continuum ; Convolution ; Correlation ; Crystal dislocations ; Dislocation ; Dislocation density ; Granulation ; Homogeneity ; Materials Engineering ; Materials Science ; Original Article ; Physical Chemistry ; Plastic deformation ; Slip ; Statistical</subject><ispartof>Materials theory, 2021-03, Vol.5 (1), p.1-34, Article 1</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293</citedby><cites>FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293</cites><orcidid>0000-0003-2976-0903 ; 0000000329760903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2499378238?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1770224$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Joseph Pierre</creatorcontrib><creatorcontrib>El-Azab, Anter</creatorcontrib><title>On the three-dimensional spatial correlations of curved dislocation systems</title><title>Materials theory</title><addtitle>Mater Theory</addtitle><description>Coarse-grained descriptions of dislocation motion in crystalline metals inherently represent a loss of information regarding dislocation-dislocation interactions. In the present work, we consider a coarse-graining framework capable of re-capturing these interactions by means of the dislocation-dislocation correlation functions. The framework depends on a convolution length to define slip-system-specific dislocation densities. Following a statistical definition of this coarse-graining process, we define a spatial correlation function which will allow the arrangement of the discrete line system at two points—and thus the strength of their interactions at short range—to be recaptured into a mean field description of dislocation dynamics. Through a statistical homogeneity argument, we present a method of evaluating this correlation function from discrete dislocation dynamics simulations. Finally, results of this evaluation are shown in the form of the correlation of dislocation densities on the same slip-system. These correlation functions are seen to depend weakly on plastic strain, and in turn, the dislocation density, but are seen to depend strongly on the convolution length. Implications of these correlation functions in regard to continuum dislocation dynamics as well as future directions of investigation are also discussed.</description><subject>Characterization and Evaluation of Materials</subject><subject>Characterization of Dislocation Ensembles: Measures and Complexity</subject><subject>Chemistry and Materials Science</subject><subject>Coarse-graining</subject><subject>Condensed Matter Physics</subject><subject>Continuum</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Crystal dislocations</subject><subject>Dislocation</subject><subject>Dislocation density</subject><subject>Granulation</subject><subject>Homogeneity</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Plastic deformation</subject><subject>Slip</subject><subject>Statistical</subject><issn>2509-8012</issn><issn>2509-8012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1vFDEMhkcIJKq2f4DTCM4D-ZwkR1TxUVGpFzhH3sRps5qdLPEsq_57sjsIeuJg2bLe95Hlt-vecPaeczt-IMUllwMTbGCMiXE4vuguhGZusIyLl8_m19010fYkMk4qIy66b_dzvzxiq4o4xLzDmXKZYeppD0tuPZRacWpzmakvqQ-H-gtjHzNNJZzXPT3Rgju66l4lmAiv__TL7sfnT99vvg53919ubz7eDUEadRwQeXQQJABDZnRMGjTqUQdunQKIPHABTqHejDw5Lk3agDYaxwjKBeHkZXe7cmOBrd_XvIP65Atkf16U-uChLjlM6DeGNzsmQI3KQthYh9ImK1PUVgvbWG9XVqElewp5wfAYyjxjWDw3hgmhmujdKtrX8vOAtPhtOdT2JPJCOSeNFfKEEqsq1EJUMf09jTN_CsqvQfkWlD8H5Y_NJFcTNfH8gPUf-j-u36ORlvQ</recordid><startdate>20210310</startdate><enddate>20210310</enddate><creator>Anderson, Joseph Pierre</creator><creator>El-Azab, Anter</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Science + Business Media</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2976-0903</orcidid><orcidid>https://orcid.org/0000000329760903</orcidid></search><sort><creationdate>20210310</creationdate><title>On the three-dimensional spatial correlations of curved dislocation systems</title><author>Anderson, Joseph Pierre ; El-Azab, Anter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Characterization of Dislocation Ensembles: Measures and Complexity</topic><topic>Chemistry and Materials Science</topic><topic>Coarse-graining</topic><topic>Condensed Matter Physics</topic><topic>Continuum</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Crystal dislocations</topic><topic>Dislocation</topic><topic>Dislocation density</topic><topic>Granulation</topic><topic>Homogeneity</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Plastic deformation</topic><topic>Slip</topic><topic>Statistical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Joseph Pierre</creatorcontrib><creatorcontrib>El-Azab, Anter</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Materials Research Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>Materials theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Joseph Pierre</au><au>El-Azab, Anter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the three-dimensional spatial correlations of curved dislocation systems</atitle><jtitle>Materials theory</jtitle><stitle>Mater Theory</stitle><date>2021-03-10</date><risdate>2021</risdate><volume>5</volume><issue>1</issue><spage>1</spage><epage>34</epage><pages>1-34</pages><artnum>1</artnum><issn>2509-8012</issn><eissn>2509-8012</eissn><abstract>Coarse-grained descriptions of dislocation motion in crystalline metals inherently represent a loss of information regarding dislocation-dislocation interactions. In the present work, we consider a coarse-graining framework capable of re-capturing these interactions by means of the dislocation-dislocation correlation functions. The framework depends on a convolution length to define slip-system-specific dislocation densities. Following a statistical definition of this coarse-graining process, we define a spatial correlation function which will allow the arrangement of the discrete line system at two points—and thus the strength of their interactions at short range—to be recaptured into a mean field description of dislocation dynamics. Through a statistical homogeneity argument, we present a method of evaluating this correlation function from discrete dislocation dynamics simulations. Finally, results of this evaluation are shown in the form of the correlation of dislocation densities on the same slip-system. These correlation functions are seen to depend weakly on plastic strain, and in turn, the dislocation density, but are seen to depend strongly on the convolution length. Implications of these correlation functions in regard to continuum dislocation dynamics as well as future directions of investigation are also discussed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s41313-020-00026-w</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-2976-0903</orcidid><orcidid>https://orcid.org/0000000329760903</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2509-8012 |
ispartof | Materials theory, 2021-03, Vol.5 (1), p.1-34, Article 1 |
issn | 2509-8012 2509-8012 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b717fbefae5e48acb89e38f83fd58528 |
source | Publicly Available Content Database |
subjects | Characterization and Evaluation of Materials Characterization of Dislocation Ensembles: Measures and Complexity Chemistry and Materials Science Coarse-graining Condensed Matter Physics Continuum Convolution Correlation Crystal dislocations Dislocation Dislocation density Granulation Homogeneity Materials Engineering Materials Science Original Article Physical Chemistry Plastic deformation Slip Statistical |
title | On the three-dimensional spatial correlations of curved dislocation systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20three-dimensional%20spatial%20correlations%20of%20curved%20dislocation%20systems&rft.jtitle=Materials%20theory&rft.au=Anderson,%20Joseph%20Pierre&rft.date=2021-03-10&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=34&rft.pages=1-34&rft.artnum=1&rft.issn=2509-8012&rft.eissn=2509-8012&rft_id=info:doi/10.1186/s41313-020-00026-w&rft_dat=%3Cproquest_doaj_%3E2499378238%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374w-ee1d9ac3aa0e075df5a5e565c1894aad1c12a94e5b61f9137fba575e6da49c293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499378238&rft_id=info:pmid/&rfr_iscdi=true |