Loading…

Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress

Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. R...

Full description

Saved in:
Bibliographic Details
Published in:International journal of genomics 2018-01, Vol.2018 (2018), p.1-13
Main Authors: Zang, Gonggu, Guo, Yuan, Liu, Touming, Xin, Pengfei, Tang, Qing, Yu, Yongting, Zhao, Lining, Cheng, Chaohua, Gao, Chunsheng, Yan, Zhun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473
cites cdi_FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473
container_end_page 13
container_issue 2018
container_start_page 1
container_title International journal of genomics
container_volume 2018
creator Zang, Gonggu
Guo, Yuan
Liu, Touming
Xin, Pengfei
Tang, Qing
Yu, Yongting
Zhao, Lining
Cheng, Chaohua
Gao, Chunsheng
Yan, Zhun
description Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.
doi_str_mv 10.1155/2018/3057272
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b73811fb35a348a68de1722e447a0c58</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b73811fb35a348a68de1722e447a0c58</doaj_id><sourcerecordid>2045207205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473</originalsourceid><addsrcrecordid>eNqFkc9rFDEUxwdRbKm9eZaAF0Wnze9kLgVZa1tYUPyB4iW8ybzZzbKbrMls1f_eWWep9GQuLySf93k8vlX1lNEzxpQ655TZc0GV4YY_qI65YLKWwtiHd3f97ag6LWVFx9OIxir9uDrijdWcK3pcfb_CmDZYfw0dkstf24ylhBTJh5z6sMZCUk-ucbMlL2YQI7ShkAJDuAUyP3tJQiQfsWxTLEiGRN7mtFssB_Jp2GueVI96WBc8PdST6su7y8-z63r-_upm9mZee03lUHspmFXGdqrTXGjuW9CaU089MwKt9WiZbHpg0ra-9wx6jyAstdpa0NKIk-pm8nYJVm6bwwbyb5cguL8PKS8c5CH4NbrWCMtY3woFQo7dtkNmOEcpDVCv7Oi6mFzbXbvBzmMcMqzvSe__xLB0i3TrVGN00-hR8PwgyOnHDsvgVmmX47i_41QqTg2naqReT5TPqZSM_d0ERt0-WLcP1h2CHfFXE74MsYOf4X_0s4nGkcEe_tHjroYa8QfzSqk6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2045207205</pqid></control><display><type>article</type><title>Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress</title><source>PubMed Central Free</source><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Zang, Gonggu ; Guo, Yuan ; Liu, Touming ; Xin, Pengfei ; Tang, Qing ; Yu, Yongting ; Zhao, Lining ; Cheng, Chaohua ; Gao, Chunsheng ; Yan, Zhun</creator><contributor>Patil, Gunvant B. ; Gunvant B Patil</contributor><creatorcontrib>Zang, Gonggu ; Guo, Yuan ; Liu, Touming ; Xin, Pengfei ; Tang, Qing ; Yu, Yongting ; Zhao, Lining ; Cheng, Chaohua ; Gao, Chunsheng ; Yan, Zhun ; Patil, Gunvant B. ; Gunvant B Patil</creatorcontrib><description>Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.</description><identifier>ISSN: 2314-436X</identifier><identifier>EISSN: 2314-4378</identifier><identifier>DOI: 10.1155/2018/3057272</identifier><identifier>PMID: 29862250</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Abscisic acid ; Cannabis ; Cannabis sativa ; Cellular stress response ; Drought ; Environmental factors ; Gene expression ; Genomes ; Inositol ; Inositol oxygenase ; Kinases ; Oxygenase ; Peroxidase ; Plant growth ; Ribonucleic acid ; RNA ; Seeds ; Transduction</subject><ispartof>International journal of genomics, 2018-01, Vol.2018 (2018), p.1-13</ispartof><rights>Copyright © 2018 Chunsheng Gao et al.</rights><rights>Copyright © 2018 Chunsheng Gao et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2018 Chunsheng Gao et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473</citedby><cites>FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473</cites><orcidid>0000-0001-6818-4094 ; 0000-0001-8917-0206 ; 0000-0003-0259-2241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2045207205/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2045207205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids></links><search><contributor>Patil, Gunvant B.</contributor><contributor>Gunvant B Patil</contributor><creatorcontrib>Zang, Gonggu</creatorcontrib><creatorcontrib>Guo, Yuan</creatorcontrib><creatorcontrib>Liu, Touming</creatorcontrib><creatorcontrib>Xin, Pengfei</creatorcontrib><creatorcontrib>Tang, Qing</creatorcontrib><creatorcontrib>Yu, Yongting</creatorcontrib><creatorcontrib>Zhao, Lining</creatorcontrib><creatorcontrib>Cheng, Chaohua</creatorcontrib><creatorcontrib>Gao, Chunsheng</creatorcontrib><creatorcontrib>Yan, Zhun</creatorcontrib><title>Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress</title><title>International journal of genomics</title><description>Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.</description><subject>Abscisic acid</subject><subject>Cannabis</subject><subject>Cannabis sativa</subject><subject>Cellular stress response</subject><subject>Drought</subject><subject>Environmental factors</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Inositol</subject><subject>Inositol oxygenase</subject><subject>Kinases</subject><subject>Oxygenase</subject><subject>Peroxidase</subject><subject>Plant growth</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Seeds</subject><subject>Transduction</subject><issn>2314-436X</issn><issn>2314-4378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc9rFDEUxwdRbKm9eZaAF0Wnze9kLgVZa1tYUPyB4iW8ybzZzbKbrMls1f_eWWep9GQuLySf93k8vlX1lNEzxpQ655TZc0GV4YY_qI65YLKWwtiHd3f97ag6LWVFx9OIxir9uDrijdWcK3pcfb_CmDZYfw0dkstf24ylhBTJh5z6sMZCUk-ucbMlL2YQI7ShkAJDuAUyP3tJQiQfsWxTLEiGRN7mtFssB_Jp2GueVI96WBc8PdST6su7y8-z63r-_upm9mZee03lUHspmFXGdqrTXGjuW9CaU089MwKt9WiZbHpg0ra-9wx6jyAstdpa0NKIk-pm8nYJVm6bwwbyb5cguL8PKS8c5CH4NbrWCMtY3woFQo7dtkNmOEcpDVCv7Oi6mFzbXbvBzmMcMqzvSe__xLB0i3TrVGN00-hR8PwgyOnHDsvgVmmX47i_41QqTg2naqReT5TPqZSM_d0ERt0-WLcP1h2CHfFXE74MsYOf4X_0s4nGkcEe_tHjroYa8QfzSqk6</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zang, Gonggu</creator><creator>Guo, Yuan</creator><creator>Liu, Touming</creator><creator>Xin, Pengfei</creator><creator>Tang, Qing</creator><creator>Yu, Yongting</creator><creator>Zhao, Lining</creator><creator>Cheng, Chaohua</creator><creator>Gao, Chunsheng</creator><creator>Yan, Zhun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6818-4094</orcidid><orcidid>https://orcid.org/0000-0001-8917-0206</orcidid><orcidid>https://orcid.org/0000-0003-0259-2241</orcidid></search><sort><creationdate>20180101</creationdate><title>Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress</title><author>Zang, Gonggu ; Guo, Yuan ; Liu, Touming ; Xin, Pengfei ; Tang, Qing ; Yu, Yongting ; Zhao, Lining ; Cheng, Chaohua ; Gao, Chunsheng ; Yan, Zhun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abscisic acid</topic><topic>Cannabis</topic><topic>Cannabis sativa</topic><topic>Cellular stress response</topic><topic>Drought</topic><topic>Environmental factors</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Inositol</topic><topic>Inositol oxygenase</topic><topic>Kinases</topic><topic>Oxygenase</topic><topic>Peroxidase</topic><topic>Plant growth</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Seeds</topic><topic>Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zang, Gonggu</creatorcontrib><creatorcontrib>Guo, Yuan</creatorcontrib><creatorcontrib>Liu, Touming</creatorcontrib><creatorcontrib>Xin, Pengfei</creatorcontrib><creatorcontrib>Tang, Qing</creatorcontrib><creatorcontrib>Yu, Yongting</creatorcontrib><creatorcontrib>Zhao, Lining</creatorcontrib><creatorcontrib>Cheng, Chaohua</creatorcontrib><creatorcontrib>Gao, Chunsheng</creatorcontrib><creatorcontrib>Yan, Zhun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zang, Gonggu</au><au>Guo, Yuan</au><au>Liu, Touming</au><au>Xin, Pengfei</au><au>Tang, Qing</au><au>Yu, Yongting</au><au>Zhao, Lining</au><au>Cheng, Chaohua</au><au>Gao, Chunsheng</au><au>Yan, Zhun</au><au>Patil, Gunvant B.</au><au>Gunvant B Patil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress</atitle><jtitle>International journal of genomics</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2314-436X</issn><eissn>2314-4378</eissn><abstract>Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29862250</pmid><doi>10.1155/2018/3057272</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6818-4094</orcidid><orcidid>https://orcid.org/0000-0001-8917-0206</orcidid><orcidid>https://orcid.org/0000-0003-0259-2241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-436X
ispartof International journal of genomics, 2018-01, Vol.2018 (2018), p.1-13
issn 2314-436X
2314-4378
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b73811fb35a348a68de1722e447a0c58
source PubMed Central Free; Wiley Online Library Open Access; Publicly Available Content Database
subjects Abscisic acid
Cannabis
Cannabis sativa
Cellular stress response
Drought
Environmental factors
Gene expression
Genomes
Inositol
Inositol oxygenase
Kinases
Oxygenase
Peroxidase
Plant growth
Ribonucleic acid
RNA
Seeds
Transduction
title Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Expression%20Profiles%20of%20Hemp%20(Cannabis%20sativa%20L.)%20in%20Response%20to%20Drought%20Stress&rft.jtitle=International%20journal%20of%20genomics&rft.au=Zang,%20Gonggu&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2314-436X&rft.eissn=2314-4378&rft_id=info:doi/10.1155/2018/3057272&rft_dat=%3Cproquest_doaj_%3E2045207205%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2045207205&rft_id=info:pmid/29862250&rfr_iscdi=true