Loading…
Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress
Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. R...
Saved in:
Published in: | International journal of genomics 2018-01, Vol.2018 (2018), p.1-13 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473 |
---|---|
cites | cdi_FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473 |
container_end_page | 13 |
container_issue | 2018 |
container_start_page | 1 |
container_title | International journal of genomics |
container_volume | 2018 |
creator | Zang, Gonggu Guo, Yuan Liu, Touming Xin, Pengfei Tang, Qing Yu, Yongting Zhao, Lining Cheng, Chaohua Gao, Chunsheng Yan, Zhun |
description | Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp. |
doi_str_mv | 10.1155/2018/3057272 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b73811fb35a348a68de1722e447a0c58</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b73811fb35a348a68de1722e447a0c58</doaj_id><sourcerecordid>2045207205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473</originalsourceid><addsrcrecordid>eNqFkc9rFDEUxwdRbKm9eZaAF0Wnze9kLgVZa1tYUPyB4iW8ybzZzbKbrMls1f_eWWep9GQuLySf93k8vlX1lNEzxpQ655TZc0GV4YY_qI65YLKWwtiHd3f97ag6LWVFx9OIxir9uDrijdWcK3pcfb_CmDZYfw0dkstf24ylhBTJh5z6sMZCUk-ucbMlL2YQI7ShkAJDuAUyP3tJQiQfsWxTLEiGRN7mtFssB_Jp2GueVI96WBc8PdST6su7y8-z63r-_upm9mZee03lUHspmFXGdqrTXGjuW9CaU089MwKt9WiZbHpg0ra-9wx6jyAstdpa0NKIk-pm8nYJVm6bwwbyb5cguL8PKS8c5CH4NbrWCMtY3woFQo7dtkNmOEcpDVCv7Oi6mFzbXbvBzmMcMqzvSe__xLB0i3TrVGN00-hR8PwgyOnHDsvgVmmX47i_41QqTg2naqReT5TPqZSM_d0ERt0-WLcP1h2CHfFXE74MsYOf4X_0s4nGkcEe_tHjroYa8QfzSqk6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2045207205</pqid></control><display><type>article</type><title>Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress</title><source>PubMed Central Free</source><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Zang, Gonggu ; Guo, Yuan ; Liu, Touming ; Xin, Pengfei ; Tang, Qing ; Yu, Yongting ; Zhao, Lining ; Cheng, Chaohua ; Gao, Chunsheng ; Yan, Zhun</creator><contributor>Patil, Gunvant B. ; Gunvant B Patil</contributor><creatorcontrib>Zang, Gonggu ; Guo, Yuan ; Liu, Touming ; Xin, Pengfei ; Tang, Qing ; Yu, Yongting ; Zhao, Lining ; Cheng, Chaohua ; Gao, Chunsheng ; Yan, Zhun ; Patil, Gunvant B. ; Gunvant B Patil</creatorcontrib><description>Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.</description><identifier>ISSN: 2314-436X</identifier><identifier>EISSN: 2314-4378</identifier><identifier>DOI: 10.1155/2018/3057272</identifier><identifier>PMID: 29862250</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Abscisic acid ; Cannabis ; Cannabis sativa ; Cellular stress response ; Drought ; Environmental factors ; Gene expression ; Genomes ; Inositol ; Inositol oxygenase ; Kinases ; Oxygenase ; Peroxidase ; Plant growth ; Ribonucleic acid ; RNA ; Seeds ; Transduction</subject><ispartof>International journal of genomics, 2018-01, Vol.2018 (2018), p.1-13</ispartof><rights>Copyright © 2018 Chunsheng Gao et al.</rights><rights>Copyright © 2018 Chunsheng Gao et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2018 Chunsheng Gao et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473</citedby><cites>FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473</cites><orcidid>0000-0001-6818-4094 ; 0000-0001-8917-0206 ; 0000-0003-0259-2241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2045207205/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2045207205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids></links><search><contributor>Patil, Gunvant B.</contributor><contributor>Gunvant B Patil</contributor><creatorcontrib>Zang, Gonggu</creatorcontrib><creatorcontrib>Guo, Yuan</creatorcontrib><creatorcontrib>Liu, Touming</creatorcontrib><creatorcontrib>Xin, Pengfei</creatorcontrib><creatorcontrib>Tang, Qing</creatorcontrib><creatorcontrib>Yu, Yongting</creatorcontrib><creatorcontrib>Zhao, Lining</creatorcontrib><creatorcontrib>Cheng, Chaohua</creatorcontrib><creatorcontrib>Gao, Chunsheng</creatorcontrib><creatorcontrib>Yan, Zhun</creatorcontrib><title>Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress</title><title>International journal of genomics</title><description>Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.</description><subject>Abscisic acid</subject><subject>Cannabis</subject><subject>Cannabis sativa</subject><subject>Cellular stress response</subject><subject>Drought</subject><subject>Environmental factors</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Inositol</subject><subject>Inositol oxygenase</subject><subject>Kinases</subject><subject>Oxygenase</subject><subject>Peroxidase</subject><subject>Plant growth</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Seeds</subject><subject>Transduction</subject><issn>2314-436X</issn><issn>2314-4378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc9rFDEUxwdRbKm9eZaAF0Wnze9kLgVZa1tYUPyB4iW8ybzZzbKbrMls1f_eWWep9GQuLySf93k8vlX1lNEzxpQ655TZc0GV4YY_qI65YLKWwtiHd3f97ag6LWVFx9OIxir9uDrijdWcK3pcfb_CmDZYfw0dkstf24ylhBTJh5z6sMZCUk-ucbMlL2YQI7ShkAJDuAUyP3tJQiQfsWxTLEiGRN7mtFssB_Jp2GueVI96WBc8PdST6su7y8-z63r-_upm9mZee03lUHspmFXGdqrTXGjuW9CaU089MwKt9WiZbHpg0ra-9wx6jyAstdpa0NKIk-pm8nYJVm6bwwbyb5cguL8PKS8c5CH4NbrWCMtY3woFQo7dtkNmOEcpDVCv7Oi6mFzbXbvBzmMcMqzvSe__xLB0i3TrVGN00-hR8PwgyOnHDsvgVmmX47i_41QqTg2naqReT5TPqZSM_d0ERt0-WLcP1h2CHfFXE74MsYOf4X_0s4nGkcEe_tHjroYa8QfzSqk6</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zang, Gonggu</creator><creator>Guo, Yuan</creator><creator>Liu, Touming</creator><creator>Xin, Pengfei</creator><creator>Tang, Qing</creator><creator>Yu, Yongting</creator><creator>Zhao, Lining</creator><creator>Cheng, Chaohua</creator><creator>Gao, Chunsheng</creator><creator>Yan, Zhun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6818-4094</orcidid><orcidid>https://orcid.org/0000-0001-8917-0206</orcidid><orcidid>https://orcid.org/0000-0003-0259-2241</orcidid></search><sort><creationdate>20180101</creationdate><title>Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress</title><author>Zang, Gonggu ; Guo, Yuan ; Liu, Touming ; Xin, Pengfei ; Tang, Qing ; Yu, Yongting ; Zhao, Lining ; Cheng, Chaohua ; Gao, Chunsheng ; Yan, Zhun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abscisic acid</topic><topic>Cannabis</topic><topic>Cannabis sativa</topic><topic>Cellular stress response</topic><topic>Drought</topic><topic>Environmental factors</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Inositol</topic><topic>Inositol oxygenase</topic><topic>Kinases</topic><topic>Oxygenase</topic><topic>Peroxidase</topic><topic>Plant growth</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Seeds</topic><topic>Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zang, Gonggu</creatorcontrib><creatorcontrib>Guo, Yuan</creatorcontrib><creatorcontrib>Liu, Touming</creatorcontrib><creatorcontrib>Xin, Pengfei</creatorcontrib><creatorcontrib>Tang, Qing</creatorcontrib><creatorcontrib>Yu, Yongting</creatorcontrib><creatorcontrib>Zhao, Lining</creatorcontrib><creatorcontrib>Cheng, Chaohua</creatorcontrib><creatorcontrib>Gao, Chunsheng</creatorcontrib><creatorcontrib>Yan, Zhun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zang, Gonggu</au><au>Guo, Yuan</au><au>Liu, Touming</au><au>Xin, Pengfei</au><au>Tang, Qing</au><au>Yu, Yongting</au><au>Zhao, Lining</au><au>Cheng, Chaohua</au><au>Gao, Chunsheng</au><au>Yan, Zhun</au><au>Patil, Gunvant B.</au><au>Gunvant B Patil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress</atitle><jtitle>International journal of genomics</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2314-436X</issn><eissn>2314-4378</eissn><abstract>Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29862250</pmid><doi>10.1155/2018/3057272</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6818-4094</orcidid><orcidid>https://orcid.org/0000-0001-8917-0206</orcidid><orcidid>https://orcid.org/0000-0003-0259-2241</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-436X |
ispartof | International journal of genomics, 2018-01, Vol.2018 (2018), p.1-13 |
issn | 2314-436X 2314-4378 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b73811fb35a348a68de1722e447a0c58 |
source | PubMed Central Free; Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Abscisic acid Cannabis Cannabis sativa Cellular stress response Drought Environmental factors Gene expression Genomes Inositol Inositol oxygenase Kinases Oxygenase Peroxidase Plant growth Ribonucleic acid RNA Seeds Transduction |
title | Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Expression%20Profiles%20of%20Hemp%20(Cannabis%20sativa%20L.)%20in%20Response%20to%20Drought%20Stress&rft.jtitle=International%20journal%20of%20genomics&rft.au=Zang,%20Gonggu&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2314-436X&rft.eissn=2314-4378&rft_id=info:doi/10.1155/2018/3057272&rft_dat=%3Cproquest_doaj_%3E2045207205%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c604t-c4318578d5d62362cba6620c0c173e88ce8149fa148bcfc1afcea3808688a6473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2045207205&rft_id=info:pmid/29862250&rfr_iscdi=true |