Loading…
The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review
Organs-on-chips (OoCs) are miniature microfluidic systems that have arguably become a class of advanced in vitro models. Deep learning, as an emerging topic in machine learning, has the ability to extract a hidden statistical relationship from the input data. Recently, these two areas have become in...
Saved in:
Published in: | Biosensors (Basel) 2023-03, Vol.13 (3), p.389 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c546t-2e1e5fef0354785653abd9bd281756f1f869f0ae6d512a23619fd96200ef2a7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c546t-2e1e5fef0354785653abd9bd281756f1f869f0ae6d512a23619fd96200ef2a7d3 |
container_end_page | |
container_issue | 3 |
container_start_page | 389 |
container_title | Biosensors (Basel) |
container_volume | 13 |
creator | Dai, Manna Xiao, Gao Shao, Ming Zhang, Yu Shrike |
description | Organs-on-chips (OoCs) are miniature microfluidic systems that have arguably become a class of advanced in vitro models. Deep learning, as an emerging topic in machine learning, has the ability to extract a hidden statistical relationship from the input data. Recently, these two areas have become integrated to achieve synergy for accelerating drug screening. This review provides a brief description of the basic concepts of deep learning used in OoCs and exemplifies the successful use cases for different types of OoCs. These microfluidic chips are of potential to be assembled as highly potent human-on-chips with complex physiological or pathological functions. Finally, we discuss the future supply with perspectives and potential challenges in terms of combining OoCs and deep learning for image processing and automation designs. |
doi_str_mv | 10.3390/bios13030389 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b753f8a188f94c7da5bbf8d9f539bf94</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743463746</galeid><doaj_id>oai_doaj_org_article_b753f8a188f94c7da5bbf8d9f539bf94</doaj_id><sourcerecordid>A743463746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-2e1e5fef0354785653abd9bd281756f1f869f0ae6d512a23619fd96200ef2a7d3</originalsourceid><addsrcrecordid>eNptks9v0zAUxyMEYlPZjTOyxIXDMuw4tmMuqOqATao0iZWz5cTPiavULk6yqf89Lh2jRfgd_PT8fR_r_ciytwRfUSrxx9qFgVCcrJIvsvMCC5lzKsqXR_5ZdjEMa5yOKIWk4nV2RrkUkmNyntWrDtD9zkNsd6iG8RHAo2uALVqCjt75Fmlv0F1stR_y4PNF57YDsiGiG9d2-aqLYWq77TSi6zi16L6JiZDSPqE5-g4PDh7fZK-s7ge4eLpn2Y-vX1aLm3x59-12MV_mDSv5mBdAgFmwmLJSVIwzqmsja1NURDBuia24tFgDN4wUuqCcSGskLzAGW2hh6Cy7PXBN0Gu1jW6j404F7dTvQIit0nF0TQ-qFozaSpOqsrJshNGsrm1lpGVU1imUWJ8PrO1Ub8A04Meo-xPo6Yt3nWrDgyIYl1zQIhE-PBFi-DnBMKqNGxroe-0hTIMqhCwYFixNZJa9_0e6DlP0qVd7FWGSEYb_qlqdKnDehvRxs4equShpuR81T6qr_6iSGdi4JniwLsVPEi4PCU0MwxDBPhdJsNrvmDresSR_d9yYZ_GfjaK_APWMyrU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791595150</pqid></control><display><type>article</type><title>The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>Coronavirus Research Database</source><creator>Dai, Manna ; Xiao, Gao ; Shao, Ming ; Zhang, Yu Shrike</creator><creatorcontrib>Dai, Manna ; Xiao, Gao ; Shao, Ming ; Zhang, Yu Shrike</creatorcontrib><description>Organs-on-chips (OoCs) are miniature microfluidic systems that have arguably become a class of advanced in vitro models. Deep learning, as an emerging topic in machine learning, has the ability to extract a hidden statistical relationship from the input data. Recently, these two areas have become integrated to achieve synergy for accelerating drug screening. This review provides a brief description of the basic concepts of deep learning used in OoCs and exemplifies the successful use cases for different types of OoCs. These microfluidic chips are of potential to be assembled as highly potent human-on-chips with complex physiological or pathological functions. Finally, we discuss the future supply with perspectives and potential challenges in terms of combining OoCs and deep learning for image processing and automation designs.</description><identifier>ISSN: 2079-6374</identifier><identifier>EISSN: 2079-6374</identifier><identifier>DOI: 10.3390/bios13030389</identifier><identifier>PMID: 36979601</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Artificial intelligence ; Automation ; Biology ; Clinical trials ; Datasets ; Deep Learning ; Drug Evaluation, Preclinical - methods ; Drug screening ; Drugs ; Efficiency ; High-Throughput Screening Assays ; human-on-chips ; Humans ; Image processing ; Machine learning ; microfluidic systems ; Microfluidics ; Microfluidics - methods ; Microphysiological Systems ; Neural networks ; Organs ; organs-on-chips ; Product/Service Evaluations ; Review ; Screening ; Success ; Transplants & implants</subject><ispartof>Biosensors (Basel), 2023-03, Vol.13 (3), p.389</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-2e1e5fef0354785653abd9bd281756f1f869f0ae6d512a23619fd96200ef2a7d3</citedby><cites>FETCH-LOGICAL-c546t-2e1e5fef0354785653abd9bd281756f1f869f0ae6d512a23619fd96200ef2a7d3</cites><orcidid>0000-0002-0045-0808 ; 0000-0003-2544-3505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791595150?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791595150?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,38495,43874,44569,53770,53772,74159,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36979601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Manna</creatorcontrib><creatorcontrib>Xiao, Gao</creatorcontrib><creatorcontrib>Shao, Ming</creatorcontrib><creatorcontrib>Zhang, Yu Shrike</creatorcontrib><title>The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review</title><title>Biosensors (Basel)</title><addtitle>Biosensors (Basel)</addtitle><description>Organs-on-chips (OoCs) are miniature microfluidic systems that have arguably become a class of advanced in vitro models. Deep learning, as an emerging topic in machine learning, has the ability to extract a hidden statistical relationship from the input data. Recently, these two areas have become integrated to achieve synergy for accelerating drug screening. This review provides a brief description of the basic concepts of deep learning used in OoCs and exemplifies the successful use cases for different types of OoCs. These microfluidic chips are of potential to be assembled as highly potent human-on-chips with complex physiological or pathological functions. Finally, we discuss the future supply with perspectives and potential challenges in terms of combining OoCs and deep learning for image processing and automation designs.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Biology</subject><subject>Clinical trials</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Drug Evaluation, Preclinical - methods</subject><subject>Drug screening</subject><subject>Drugs</subject><subject>Efficiency</subject><subject>High-Throughput Screening Assays</subject><subject>human-on-chips</subject><subject>Humans</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>microfluidic systems</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>Microphysiological Systems</subject><subject>Neural networks</subject><subject>Organs</subject><subject>organs-on-chips</subject><subject>Product/Service Evaluations</subject><subject>Review</subject><subject>Screening</subject><subject>Success</subject><subject>Transplants & implants</subject><issn>2079-6374</issn><issn>2079-6374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9v0zAUxyMEYlPZjTOyxIXDMuw4tmMuqOqATao0iZWz5cTPiavULk6yqf89Lh2jRfgd_PT8fR_r_ciytwRfUSrxx9qFgVCcrJIvsvMCC5lzKsqXR_5ZdjEMa5yOKIWk4nV2RrkUkmNyntWrDtD9zkNsd6iG8RHAo2uALVqCjt75Fmlv0F1stR_y4PNF57YDsiGiG9d2-aqLYWq77TSi6zi16L6JiZDSPqE5-g4PDh7fZK-s7ge4eLpn2Y-vX1aLm3x59-12MV_mDSv5mBdAgFmwmLJSVIwzqmsja1NURDBuia24tFgDN4wUuqCcSGskLzAGW2hh6Cy7PXBN0Gu1jW6j404F7dTvQIit0nF0TQ-qFozaSpOqsrJshNGsrm1lpGVU1imUWJ8PrO1Ub8A04Meo-xPo6Yt3nWrDgyIYl1zQIhE-PBFi-DnBMKqNGxroe-0hTIMqhCwYFixNZJa9_0e6DlP0qVd7FWGSEYb_qlqdKnDehvRxs4equShpuR81T6qr_6iSGdi4JniwLsVPEi4PCU0MwxDBPhdJsNrvmDresSR_d9yYZ_GfjaK_APWMyrU</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Dai, Manna</creator><creator>Xiao, Gao</creator><creator>Shao, Ming</creator><creator>Zhang, Yu Shrike</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0045-0808</orcidid><orcidid>https://orcid.org/0000-0003-2544-3505</orcidid></search><sort><creationdate>20230301</creationdate><title>The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review</title><author>Dai, Manna ; Xiao, Gao ; Shao, Ming ; Zhang, Yu Shrike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-2e1e5fef0354785653abd9bd281756f1f869f0ae6d512a23619fd96200ef2a7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Biology</topic><topic>Clinical trials</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Drug Evaluation, Preclinical - methods</topic><topic>Drug screening</topic><topic>Drugs</topic><topic>Efficiency</topic><topic>High-Throughput Screening Assays</topic><topic>human-on-chips</topic><topic>Humans</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>microfluidic systems</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>Microphysiological Systems</topic><topic>Neural networks</topic><topic>Organs</topic><topic>organs-on-chips</topic><topic>Product/Service Evaluations</topic><topic>Review</topic><topic>Screening</topic><topic>Success</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Manna</creatorcontrib><creatorcontrib>Xiao, Gao</creatorcontrib><creatorcontrib>Shao, Ming</creatorcontrib><creatorcontrib>Zhang, Yu Shrike</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Biosensors (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Manna</au><au>Xiao, Gao</au><au>Shao, Ming</au><au>Zhang, Yu Shrike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review</atitle><jtitle>Biosensors (Basel)</jtitle><addtitle>Biosensors (Basel)</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><spage>389</spage><pages>389-</pages><issn>2079-6374</issn><eissn>2079-6374</eissn><abstract>Organs-on-chips (OoCs) are miniature microfluidic systems that have arguably become a class of advanced in vitro models. Deep learning, as an emerging topic in machine learning, has the ability to extract a hidden statistical relationship from the input data. Recently, these two areas have become integrated to achieve synergy for accelerating drug screening. This review provides a brief description of the basic concepts of deep learning used in OoCs and exemplifies the successful use cases for different types of OoCs. These microfluidic chips are of potential to be assembled as highly potent human-on-chips with complex physiological or pathological functions. Finally, we discuss the future supply with perspectives and potential challenges in terms of combining OoCs and deep learning for image processing and automation designs.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36979601</pmid><doi>10.3390/bios13030389</doi><orcidid>https://orcid.org/0000-0002-0045-0808</orcidid><orcidid>https://orcid.org/0000-0003-2544-3505</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6374 |
ispartof | Biosensors (Basel), 2023-03, Vol.13 (3), p.389 |
issn | 2079-6374 2079-6374 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b753f8a188f94c7da5bbf8d9f539bf94 |
source | Publicly Available Content Database; PubMed Central(OpenAccess); Coronavirus Research Database |
subjects | Artificial intelligence Automation Biology Clinical trials Datasets Deep Learning Drug Evaluation, Preclinical - methods Drug screening Drugs Efficiency High-Throughput Screening Assays human-on-chips Humans Image processing Machine learning microfluidic systems Microfluidics Microfluidics - methods Microphysiological Systems Neural networks Organs organs-on-chips Product/Service Evaluations Review Screening Success Transplants & implants |
title | The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Synergy%20between%20Deep%20Learning%20and%20Organs-on-Chips%20for%20High-Throughput%20Drug%20Screening:%20A%20Review&rft.jtitle=Biosensors%20(Basel)&rft.au=Dai,%20Manna&rft.date=2023-03-01&rft.volume=13&rft.issue=3&rft.spage=389&rft.pages=389-&rft.issn=2079-6374&rft.eissn=2079-6374&rft_id=info:doi/10.3390/bios13030389&rft_dat=%3Cgale_doaj_%3EA743463746%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c546t-2e1e5fef0354785653abd9bd281756f1f869f0ae6d512a23619fd96200ef2a7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791595150&rft_id=info:pmid/36979601&rft_galeid=A743463746&rfr_iscdi=true |