Loading…

Experimental investigation on the effet of input paramètres on surface roughness and MRR of abrasive flow machining process

A crucial and costly step in the whole manufacturing process is the precision and super finishing procedure. A step of final finishing is involved in the production of precision components. It accounts for a respectable portion of the cost of production overall, is mostly uncontrolled, and requires...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2023-01, Vol.391, p.1024
Main Authors: Rao, P. Kondala, Janardhana, G. Ranga
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A crucial and costly step in the whole manufacturing process is the precision and super finishing procedure. A step of final finishing is involved in the production of precision components. It accounts for a respectable portion of the cost of production overall, is mostly uncontrolled, and requires a lot of manpower. Abrasive finish methods are being developed to address issues including high direct costs and the production of precision components with particular characteristics for finishing inaccessible places. A vast number of cutting blades with arbitrary orientation and shape are used in the abrasive finishing process. Due to their ability to complete a variety of form geometries with the appropriate dimensional accuracy and surface polish, abrasive fine procedures are often used. The unconventional finishing method known as AFM (abrasive flow machining) presses abrasive viscoelastic polymer on the surface of work piece. Al7075/SiC NMMCs’ internal rounded and hollow surfaces are completed using an AFM trial procedure that is constructed and designed in conjunction with specially produced medium. Workpieces are created using a lathe shortly after stir casting metal matrix nano composites with cross sections of 25 mm in diameter and containing 1 percent,1 ,2,3,4 nano-Sic (50 nm) by weight. Extrusion pressure abrasive particle grain size number of cycles were evaluated for their surface roughness (Ra) than material removal (MR), respectively. The evaluation of the material’s qualities, such as density, hardness, and tensile strength The improvement in the surface completeness of these NMMCs is further shown by the scanning Microscopy OM, EDS SEM, and XED analyses.
ISSN:2267-1242
2267-1242
DOI:10.1051/e3sconf/202339101024