Loading…
A New Approach in Detectability of Microcalcifications in the Placenta during Pregnancy Using Textural Features and K-Nearest Neighbors Algorithm
(1) Background: Ultrasonography is the main method used during pregnancy to assess the fetal growth, amniotic fluid, umbilical cord and placenta. The placenta's structure suffers dynamic modifications throughout the whole pregnancy and many of these changes, in which placental microcalcificatio...
Saved in:
Published in: | Journal of imaging 2022-03, Vol.8 (3), p.81 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-ae47b817f7d813f9d8cb710f54c8a24085e6862d8c92f9ccd9729e27f09e26073 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-ae47b817f7d813f9d8cb710f54c8a24085e6862d8c92f9ccd9729e27f09e26073 |
container_end_page | |
container_issue | 3 |
container_start_page | 81 |
container_title | Journal of imaging |
container_volume | 8 |
creator | Miron, Mihaela Moldovanu, Simona Ștefănescu, Bogdan Ioan Culea, Mihai Pavel, Sorin Marius Culea-Florescu, Anisia Luiza |
description | (1) Background: Ultrasonography is the main method used during pregnancy to assess the fetal growth, amniotic fluid, umbilical cord and placenta. The placenta's structure suffers dynamic modifications throughout the whole pregnancy and many of these changes, in which placental microcalcifications are by far the most prominent, are related to the process of aging and maturation and have no effect on fetal wellbeing. However, when placental microcalcifications are noticed earlier during pregnancy, they could suggest a major placental dysfunction with serious consequences for the fetus and mother. For better detectability of microcalcifications, we propose a new approach based on improving the clarity of details and the analysis of the placental structure using first and second order statistics, and fractal dimension. (2) Methods: The methodology is based on four stages: (i) cropping the region of interest and preprocessing steps; (ii) feature extraction, first order-standard deviation (SD), skewness (SK) and kurtosis (KR)-and second order-contrast (C), homogeneity (H), correlation (CR), energy (E) and entropy (EN)-are computed from a gray level co-occurrence matrix (GLCM) and fractal dimension (FD); (iii) statistical analysis (t-test); (iv) classification with the K-Nearest Neighbors algorithm (K-NN algorithm) and performance comparison with results from the support vector machine algorithm (SVM algorithm). (3) Results: Experimental results obtained from real clinical data show an improvement in the detectability and visibility of placental microcalcifications. |
doi_str_mv | 10.3390/jimaging8030081 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b78503adbd3c499db6f34b10553833d5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b78503adbd3c499db6f34b10553833d5</doaj_id><sourcerecordid>2644009837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-ae47b817f7d813f9d8cb710f54c8a24085e6862d8c92f9ccd9729e27f09e26073</originalsourceid><addsrcrecordid>eNpdUsFuFSEUnRiNbWrX7gyJGzdjGS4zwMbkpbXaWGsXbeKOMMDM8DJveAKjvs_wj2V8tWm7AO6Fw-Hcwy2K1xV-DyDwydptVO-mnmPAmFfPikMCFZQU4PvzB_FBcRzjGmNcCZKHeFkcQA2ENtAcFn9W6Mr-QqvtNnilB-QmdGaT1Um1bnRph3yHvjodvFajdp3TKjk_xQWXBouuR6XtlBQyc8hK0HWw_aQmvUO3cclv7O80BzWic6tyYCNSk0FfyiurcpLy264fWh8iWo29Dy4Nm1fFi06N0R7frUfF7fnHm9PP5eW3Txenq8tS04qlUlnKWl6xjhleQScM1y2rcFdTzRWhmNe24Q3J24J0QmsjGBGWsA7nucEMjoqLPa_xai23IZsZdtIrJ_9t-NBLFZLTo5Ut4zUGZVoDmgph2qYD2la4roEDmDpzfdhzbed2Y81iSS76Eenjk8kNsvc_JRc14Jpmgnd3BMH_mLMzcuOituOoJuvnKElDKcaCw6L77RPo2s9hylYtKEIJY2RRdLJH5a-LMdjuXkyF5dI98kn35BtvHtZwj__fK_AXDCTDmA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642427725</pqid></control><display><type>article</type><title>A New Approach in Detectability of Microcalcifications in the Placenta during Pregnancy Using Textural Features and K-Nearest Neighbors Algorithm</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Miron, Mihaela ; Moldovanu, Simona ; Ștefănescu, Bogdan Ioan ; Culea, Mihai ; Pavel, Sorin Marius ; Culea-Florescu, Anisia Luiza</creator><creatorcontrib>Miron, Mihaela ; Moldovanu, Simona ; Ștefănescu, Bogdan Ioan ; Culea, Mihai ; Pavel, Sorin Marius ; Culea-Florescu, Anisia Luiza</creatorcontrib><description>(1) Background: Ultrasonography is the main method used during pregnancy to assess the fetal growth, amniotic fluid, umbilical cord and placenta. The placenta's structure suffers dynamic modifications throughout the whole pregnancy and many of these changes, in which placental microcalcifications are by far the most prominent, are related to the process of aging and maturation and have no effect on fetal wellbeing. However, when placental microcalcifications are noticed earlier during pregnancy, they could suggest a major placental dysfunction with serious consequences for the fetus and mother. For better detectability of microcalcifications, we propose a new approach based on improving the clarity of details and the analysis of the placental structure using first and second order statistics, and fractal dimension. (2) Methods: The methodology is based on four stages: (i) cropping the region of interest and preprocessing steps; (ii) feature extraction, first order-standard deviation (SD), skewness (SK) and kurtosis (KR)-and second order-contrast (C), homogeneity (H), correlation (CR), energy (E) and entropy (EN)-are computed from a gray level co-occurrence matrix (GLCM) and fractal dimension (FD); (iii) statistical analysis (t-test); (iv) classification with the K-Nearest Neighbors algorithm (K-NN algorithm) and performance comparison with results from the support vector machine algorithm (SVM algorithm). (3) Results: Experimental results obtained from real clinical data show an improvement in the detectability and visibility of placental microcalcifications.</description><identifier>ISSN: 2313-433X</identifier><identifier>EISSN: 2313-433X</identifier><identifier>DOI: 10.3390/jimaging8030081</identifier><identifier>PMID: 35324636</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Aging ; Algorithms ; calcifications ; Classification ; Feature extraction ; Feature selection ; Fetuses ; first order feature ; Fractal analysis ; Fractal geometry ; Fractals ; Homogeneity ; Hypertension ; K-nearest neighbors algorithm ; Kurtosis ; Medical imaging ; Noise ; Placenta ; Pregnancy ; preterm placental calcifications ; Prostate ; second order feature ; Statistical analysis ; Student's t-test ; Support vector machines ; t-test ; Ultrasonic imaging ; Visibility</subject><ispartof>Journal of imaging, 2022-03, Vol.8 (3), p.81</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-ae47b817f7d813f9d8cb710f54c8a24085e6862d8c92f9ccd9729e27f09e26073</citedby><cites>FETCH-LOGICAL-c417t-ae47b817f7d813f9d8cb710f54c8a24085e6862d8c92f9ccd9729e27f09e26073</cites><orcidid>0000-0002-5934-329X ; 0000-0002-1362-909X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642427725/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642427725?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35324636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miron, Mihaela</creatorcontrib><creatorcontrib>Moldovanu, Simona</creatorcontrib><creatorcontrib>Ștefănescu, Bogdan Ioan</creatorcontrib><creatorcontrib>Culea, Mihai</creatorcontrib><creatorcontrib>Pavel, Sorin Marius</creatorcontrib><creatorcontrib>Culea-Florescu, Anisia Luiza</creatorcontrib><title>A New Approach in Detectability of Microcalcifications in the Placenta during Pregnancy Using Textural Features and K-Nearest Neighbors Algorithm</title><title>Journal of imaging</title><addtitle>J Imaging</addtitle><description>(1) Background: Ultrasonography is the main method used during pregnancy to assess the fetal growth, amniotic fluid, umbilical cord and placenta. The placenta's structure suffers dynamic modifications throughout the whole pregnancy and many of these changes, in which placental microcalcifications are by far the most prominent, are related to the process of aging and maturation and have no effect on fetal wellbeing. However, when placental microcalcifications are noticed earlier during pregnancy, they could suggest a major placental dysfunction with serious consequences for the fetus and mother. For better detectability of microcalcifications, we propose a new approach based on improving the clarity of details and the analysis of the placental structure using first and second order statistics, and fractal dimension. (2) Methods: The methodology is based on four stages: (i) cropping the region of interest and preprocessing steps; (ii) feature extraction, first order-standard deviation (SD), skewness (SK) and kurtosis (KR)-and second order-contrast (C), homogeneity (H), correlation (CR), energy (E) and entropy (EN)-are computed from a gray level co-occurrence matrix (GLCM) and fractal dimension (FD); (iii) statistical analysis (t-test); (iv) classification with the K-Nearest Neighbors algorithm (K-NN algorithm) and performance comparison with results from the support vector machine algorithm (SVM algorithm). (3) Results: Experimental results obtained from real clinical data show an improvement in the detectability and visibility of placental microcalcifications.</description><subject>Accuracy</subject><subject>Aging</subject><subject>Algorithms</subject><subject>calcifications</subject><subject>Classification</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Fetuses</subject><subject>first order feature</subject><subject>Fractal analysis</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Homogeneity</subject><subject>Hypertension</subject><subject>K-nearest neighbors algorithm</subject><subject>Kurtosis</subject><subject>Medical imaging</subject><subject>Noise</subject><subject>Placenta</subject><subject>Pregnancy</subject><subject>preterm placental calcifications</subject><subject>Prostate</subject><subject>second order feature</subject><subject>Statistical analysis</subject><subject>Student's t-test</subject><subject>Support vector machines</subject><subject>t-test</subject><subject>Ultrasonic imaging</subject><subject>Visibility</subject><issn>2313-433X</issn><issn>2313-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUsFuFSEUnRiNbWrX7gyJGzdjGS4zwMbkpbXaWGsXbeKOMMDM8DJveAKjvs_wj2V8tWm7AO6Fw-Hcwy2K1xV-DyDwydptVO-mnmPAmFfPikMCFZQU4PvzB_FBcRzjGmNcCZKHeFkcQA2ENtAcFn9W6Mr-QqvtNnilB-QmdGaT1Um1bnRph3yHvjodvFajdp3TKjk_xQWXBouuR6XtlBQyc8hK0HWw_aQmvUO3cclv7O80BzWic6tyYCNSk0FfyiurcpLy264fWh8iWo29Dy4Nm1fFi06N0R7frUfF7fnHm9PP5eW3Txenq8tS04qlUlnKWl6xjhleQScM1y2rcFdTzRWhmNe24Q3J24J0QmsjGBGWsA7nucEMjoqLPa_xai23IZsZdtIrJ_9t-NBLFZLTo5Ut4zUGZVoDmgph2qYD2la4roEDmDpzfdhzbed2Y81iSS76Eenjk8kNsvc_JRc14Jpmgnd3BMH_mLMzcuOituOoJuvnKElDKcaCw6L77RPo2s9hylYtKEIJY2RRdLJH5a-LMdjuXkyF5dI98kn35BtvHtZwj__fK_AXDCTDmA</recordid><startdate>20220319</startdate><enddate>20220319</enddate><creator>Miron, Mihaela</creator><creator>Moldovanu, Simona</creator><creator>Ștefănescu, Bogdan Ioan</creator><creator>Culea, Mihai</creator><creator>Pavel, Sorin Marius</creator><creator>Culea-Florescu, Anisia Luiza</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5934-329X</orcidid><orcidid>https://orcid.org/0000-0002-1362-909X</orcidid></search><sort><creationdate>20220319</creationdate><title>A New Approach in Detectability of Microcalcifications in the Placenta during Pregnancy Using Textural Features and K-Nearest Neighbors Algorithm</title><author>Miron, Mihaela ; Moldovanu, Simona ; Ștefănescu, Bogdan Ioan ; Culea, Mihai ; Pavel, Sorin Marius ; Culea-Florescu, Anisia Luiza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-ae47b817f7d813f9d8cb710f54c8a24085e6862d8c92f9ccd9729e27f09e26073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Aging</topic><topic>Algorithms</topic><topic>calcifications</topic><topic>Classification</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Fetuses</topic><topic>first order feature</topic><topic>Fractal analysis</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Homogeneity</topic><topic>Hypertension</topic><topic>K-nearest neighbors algorithm</topic><topic>Kurtosis</topic><topic>Medical imaging</topic><topic>Noise</topic><topic>Placenta</topic><topic>Pregnancy</topic><topic>preterm placental calcifications</topic><topic>Prostate</topic><topic>second order feature</topic><topic>Statistical analysis</topic><topic>Student's t-test</topic><topic>Support vector machines</topic><topic>t-test</topic><topic>Ultrasonic imaging</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miron, Mihaela</creatorcontrib><creatorcontrib>Moldovanu, Simona</creatorcontrib><creatorcontrib>Ștefănescu, Bogdan Ioan</creatorcontrib><creatorcontrib>Culea, Mihai</creatorcontrib><creatorcontrib>Pavel, Sorin Marius</creatorcontrib><creatorcontrib>Culea-Florescu, Anisia Luiza</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miron, Mihaela</au><au>Moldovanu, Simona</au><au>Ștefănescu, Bogdan Ioan</au><au>Culea, Mihai</au><au>Pavel, Sorin Marius</au><au>Culea-Florescu, Anisia Luiza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach in Detectability of Microcalcifications in the Placenta during Pregnancy Using Textural Features and K-Nearest Neighbors Algorithm</atitle><jtitle>Journal of imaging</jtitle><addtitle>J Imaging</addtitle><date>2022-03-19</date><risdate>2022</risdate><volume>8</volume><issue>3</issue><spage>81</spage><pages>81-</pages><issn>2313-433X</issn><eissn>2313-433X</eissn><abstract>(1) Background: Ultrasonography is the main method used during pregnancy to assess the fetal growth, amniotic fluid, umbilical cord and placenta. The placenta's structure suffers dynamic modifications throughout the whole pregnancy and many of these changes, in which placental microcalcifications are by far the most prominent, are related to the process of aging and maturation and have no effect on fetal wellbeing. However, when placental microcalcifications are noticed earlier during pregnancy, they could suggest a major placental dysfunction with serious consequences for the fetus and mother. For better detectability of microcalcifications, we propose a new approach based on improving the clarity of details and the analysis of the placental structure using first and second order statistics, and fractal dimension. (2) Methods: The methodology is based on four stages: (i) cropping the region of interest and preprocessing steps; (ii) feature extraction, first order-standard deviation (SD), skewness (SK) and kurtosis (KR)-and second order-contrast (C), homogeneity (H), correlation (CR), energy (E) and entropy (EN)-are computed from a gray level co-occurrence matrix (GLCM) and fractal dimension (FD); (iii) statistical analysis (t-test); (iv) classification with the K-Nearest Neighbors algorithm (K-NN algorithm) and performance comparison with results from the support vector machine algorithm (SVM algorithm). (3) Results: Experimental results obtained from real clinical data show an improvement in the detectability and visibility of placental microcalcifications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35324636</pmid><doi>10.3390/jimaging8030081</doi><orcidid>https://orcid.org/0000-0002-5934-329X</orcidid><orcidid>https://orcid.org/0000-0002-1362-909X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2313-433X |
ispartof | Journal of imaging, 2022-03, Vol.8 (3), p.81 |
issn | 2313-433X 2313-433X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b78503adbd3c499db6f34b10553833d5 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Aging Algorithms calcifications Classification Feature extraction Feature selection Fetuses first order feature Fractal analysis Fractal geometry Fractals Homogeneity Hypertension K-nearest neighbors algorithm Kurtosis Medical imaging Noise Placenta Pregnancy preterm placental calcifications Prostate second order feature Statistical analysis Student's t-test Support vector machines t-test Ultrasonic imaging Visibility |
title | A New Approach in Detectability of Microcalcifications in the Placenta during Pregnancy Using Textural Features and K-Nearest Neighbors Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20in%20Detectability%20of%20Microcalcifications%20in%20the%20Placenta%20during%20Pregnancy%20Using%20Textural%20Features%20and%20K-Nearest%20Neighbors%20Algorithm&rft.jtitle=Journal%20of%20imaging&rft.au=Miron,%20Mihaela&rft.date=2022-03-19&rft.volume=8&rft.issue=3&rft.spage=81&rft.pages=81-&rft.issn=2313-433X&rft.eissn=2313-433X&rft_id=info:doi/10.3390/jimaging8030081&rft_dat=%3Cproquest_doaj_%3E2644009837%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-ae47b817f7d813f9d8cb710f54c8a24085e6862d8c92f9ccd9729e27f09e26073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642427725&rft_id=info:pmid/35324636&rfr_iscdi=true |