Loading…
Mechanobiologically optimized Ti–35Nb–2Ta–3Zr improves load transduction and enhances bone remodeling in tilted dental implant therapy
The tilted implant with immediate function is increasingly used in clinical dental therapy for edentulous and partially edentulous patients with excessive bone resorption and the anatomic limitations in the alveolar ridge. However, peri-implant cervical bone loss can be caused by the stress shieldin...
Saved in:
Published in: | Bioactive materials 2022-10, Vol.16, p.15-26 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The tilted implant with immediate function is increasingly used in clinical dental therapy for edentulous and partially edentulous patients with excessive bone resorption and the anatomic limitations in the alveolar ridge. However, peri-implant cervical bone loss can be caused by the stress shielding effect. Herein, inspired by the concept of “materiobiology”, the mechanical characteristics of materials were considered along with bone biology for tilted implant design. In this study, a novel Ti–35Nb–2Ta–3Zr alloy (TNTZ) implant with low elastic modulus, high strength and favorable biocompatibility was developed. Then the human alveolar bone environment was mimicked in goat and finite element (FE) models to investigate the mechanical property and the related peri-implant bone remodeling of TNTZ compared to commonly used Ti–6Al–4V (TC4) in tilted implantation under loading condition. Next, a layer-by-layer quantitative correlation of the FE and X-ray Microscopy (XRM) analysis suggested that the TNTZ implant present better mechanobiological characteristics including improved load transduction and increased bone area in the tilted implantation model compared to TC4 implant, especially in the upper 1/3 region of peri-implant bone that is “lower stress”. Finally, combining the static and dynamic parameters of bone, it was further verified that TNTZ enhanced bone remodeling in “lower stress” upper 1/3 region. This study demonstrates that TNTZ is a mechanobiological optimized tilted implant material that enhances load transduction and bone remodeling.
[Display omitted]
•The mechanical properties and deformation mechanisms of Ti–35Nb–2Ta–3Zr alloys were studied.•The cell biocompatibility, a layer-by-layer correlation of the finite element and X-ray Microscopy analysis were evaluated.•Ti–35Nb–2Ta–3Zr implant improves load transduction and enhances bone remodeling in tilted implantation models.•Mechanobiologically optimized Ti–35Nb–2Ta–3Zr alloy meets the clinical application requirements of tilted implant therapy. |
---|---|
ISSN: | 2452-199X 2452-199X |
DOI: | 10.1016/j.bioactmat.2022.03.005 |