Loading…
An Integrated Design and Optimization Approach for Radial Inflow Turbines—Part I: Automated Preliminary Design
An integrated design and optimization approach was developed for radial inflow turbines, which consists of two modules, an automated preliminary design module, and a flexible three-dimensional multidisciplinary optimization module. In this paper, the first module about the automated preliminary desi...
Saved in:
Published in: | Applied sciences 2018-11, Vol.8 (11), p.2038 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An integrated design and optimization approach was developed for radial inflow turbines, which consists of two modules, an automated preliminary design module, and a flexible three-dimensional multidisciplinary optimization module. In this paper, the first module about the automated preliminary design approach was presented in detail and validated by the experimental data. The approach employs a genetic algorithm to explore the design space defined by the loading coefficient, flow coefficient, and rotational speed. The aim is to obtain the best design scheme with high aerodynamic performance under specified constraints and to reduce the dependency on human experiences when designing a radial inflow turbine. The validation results show that the present approach is able to get the optimal design and alleviate the dependence on the designer’s expertise under specified constraints at the preliminary design stage. Furthermore, the optimization results indicate that using the present optimization approach the total-to-static efficiency of the optimized T-100 radial inflow turbine can be increased by 1.0% under design condition and the rotor weight can be decreased by 0.35 kg (26.7%) as compared with that of the original case. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app8112038 |