Loading…

Enhancing monitoring of suspicious activities with AI-based and big data fusion

This study provides an AI-based detection tool for the surveillance of suspicious activities using data fusion. The system leverages time, location, and specific data pertaining to individuals, objects, and vehicles associated with the agency. The study's training data was obtained from Thailan...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ. Computer science 2024-01, Vol.10, p.e1741-e1741, Article e1741
Main Author: Vorapatratorn, Surapol
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c539t-b6f910c8bdc5b05b3da414eb24c7f65c6bb0841dec9c9075fdf7a1da9755c5d73
container_end_page e1741
container_issue
container_start_page e1741
container_title PeerJ. Computer science
container_volume 10
creator Vorapatratorn, Surapol
description This study provides an AI-based detection tool for the surveillance of suspicious activities using data fusion. The system leverages time, location, and specific data pertaining to individuals, objects, and vehicles associated with the agency. The study's training data was obtained from Thailand's military institution. The study focuses on comparing the efficiency between MySQL and Apache Hive for big data processing. According to the findings, MySQL is better suited for quick data retrieval and low storage capacity, while Hive demonstrates higher scalabilities for larger datasets. Furthermore, the study explores the practical utilization of web applications interfaces, enabling real-time display, analysis, and identification suspicious activity results. The web application, built with NuxtJS and MySQL, includes statistics charts and maps that show the status of suspicious items, cars, and people, as well as data filtering options. The system utilizes machine-learning algorithms to train the suspicious identification model, with the best-performing algorithms being the decision tree, reaching 98.867% classification accuracy.
doi_str_mv 10.7717/peerj-cs.1741
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b7e474c85c2c46d79531de387c1f33c0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813875282</galeid><doaj_id>oai_doaj_org_article_b7e474c85c2c46d79531de387c1f33c0</doaj_id><sourcerecordid>A813875282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-b6f910c8bdc5b05b3da414eb24c7f65c6bb0841dec9c9075fdf7a1da9755c5d73</originalsourceid><addsrcrecordid>eNptks9vFCEUxydGY5vao1cziRc9zArDMAwns2mqbtKkiT_OBB4wy2YXVmCq_vcyu7V2jXDg5fF53wffvKp6idGCMcze7Y2JmwbSArMOP6nOW8L6hnLePn0Un1WXKW0QQpjisvjz6owMHaGU9ufV7bVfSw_Oj_UueJdDnMNg6zSlvQMXplRLyO7OZWdS_cPldb1cNUomo2vpda3cWGuZZW2n5IJ_UT2zcpvM5f15UX37cP316lNzc_txdbW8aYASnhvVW44RDEoDVYgqomWHO6PaDpjtKfRKoaHD2gAHjhi12jKJteSMUqCakYtqddTVQW7EPrqdjL9EkE4cEiGOQsbsYGuEYqZjHQwUWuh6zTglRZgMDLAlBFDRen_U2k9qZzQYn6Pcnoie3ni3FmO4ExhxxPHQFoU39woxfJ9MymLnEpjtVnpTHBQtJ4wQ1vG52et_0E2Yoi9eFQoPpG97Sv9Soyw_cN6G0hhmUbEccHk7bQ9tF_-hytZm5yB4Y13JnxS8PSkoTDY_8yinlMTqy-dTtjmyEENK0dgHQzAS8_SJw_QJSGKevsK_euziA_1n1shvyCLVCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918362655</pqid></control><display><type>article</type><title>Enhancing monitoring of suspicious activities with AI-based and big data fusion</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Vorapatratorn, Surapol</creator><creatorcontrib>Vorapatratorn, Surapol</creatorcontrib><description>This study provides an AI-based detection tool for the surveillance of suspicious activities using data fusion. The system leverages time, location, and specific data pertaining to individuals, objects, and vehicles associated with the agency. The study's training data was obtained from Thailand's military institution. The study focuses on comparing the efficiency between MySQL and Apache Hive for big data processing. According to the findings, MySQL is better suited for quick data retrieval and low storage capacity, while Hive demonstrates higher scalabilities for larger datasets. Furthermore, the study explores the practical utilization of web applications interfaces, enabling real-time display, analysis, and identification suspicious activity results. The web application, built with NuxtJS and MySQL, includes statistics charts and maps that show the status of suspicious items, cars, and people, as well as data filtering options. The system utilizes machine-learning algorithms to train the suspicious identification model, with the best-performing algorithms being the decision tree, reaching 98.867% classification accuracy.</description><identifier>ISSN: 2376-5992</identifier><identifier>EISSN: 2376-5992</identifier><identifier>DOI: 10.7717/peerj-cs.1741</identifier><identifier>PMID: 38435556</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Algorithms ; Applications programs ; Artificial Intelligence ; Automation ; Automobiles ; Big Data ; Classification ; Data integration ; Data mining ; Data processing ; Data retrieval ; Data Science ; Data warehouse ; Database management systems ; Decision trees ; Facial recognition technology ; Hadoop hive ; Information sources ; Internet software ; Machine learning ; Metadata ; National security ; Security programs ; Storage capacity ; Surveillance ; Tourism ; User interfaces ; Web application ; Web applications</subject><ispartof>PeerJ. Computer science, 2024-01, Vol.10, p.e1741-e1741, Article e1741</ispartof><rights>2024 Vorapatratorn.</rights><rights>COPYRIGHT 2024 PeerJ. Ltd.</rights><rights>2024 Vorapatratorn. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Vorapatratorn 2024 Vorapatratorn</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c539t-b6f910c8bdc5b05b3da414eb24c7f65c6bb0841dec9c9075fdf7a1da9755c5d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918362655/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918362655?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38435556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vorapatratorn, Surapol</creatorcontrib><title>Enhancing monitoring of suspicious activities with AI-based and big data fusion</title><title>PeerJ. Computer science</title><addtitle>PeerJ Comput Sci</addtitle><description>This study provides an AI-based detection tool for the surveillance of suspicious activities using data fusion. The system leverages time, location, and specific data pertaining to individuals, objects, and vehicles associated with the agency. The study's training data was obtained from Thailand's military institution. The study focuses on comparing the efficiency between MySQL and Apache Hive for big data processing. According to the findings, MySQL is better suited for quick data retrieval and low storage capacity, while Hive demonstrates higher scalabilities for larger datasets. Furthermore, the study explores the practical utilization of web applications interfaces, enabling real-time display, analysis, and identification suspicious activity results. The web application, built with NuxtJS and MySQL, includes statistics charts and maps that show the status of suspicious items, cars, and people, as well as data filtering options. The system utilizes machine-learning algorithms to train the suspicious identification model, with the best-performing algorithms being the decision tree, reaching 98.867% classification accuracy.</description><subject>Algorithms</subject><subject>Applications programs</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Automobiles</subject><subject>Big Data</subject><subject>Classification</subject><subject>Data integration</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Data retrieval</subject><subject>Data Science</subject><subject>Data warehouse</subject><subject>Database management systems</subject><subject>Decision trees</subject><subject>Facial recognition technology</subject><subject>Hadoop hive</subject><subject>Information sources</subject><subject>Internet software</subject><subject>Machine learning</subject><subject>Metadata</subject><subject>National security</subject><subject>Security programs</subject><subject>Storage capacity</subject><subject>Surveillance</subject><subject>Tourism</subject><subject>User interfaces</subject><subject>Web application</subject><subject>Web applications</subject><issn>2376-5992</issn><issn>2376-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9vFCEUxydGY5vao1cziRc9zArDMAwns2mqbtKkiT_OBB4wy2YXVmCq_vcyu7V2jXDg5fF53wffvKp6idGCMcze7Y2JmwbSArMOP6nOW8L6hnLePn0Un1WXKW0QQpjisvjz6owMHaGU9ufV7bVfSw_Oj_UueJdDnMNg6zSlvQMXplRLyO7OZWdS_cPldb1cNUomo2vpda3cWGuZZW2n5IJ_UT2zcpvM5f15UX37cP316lNzc_txdbW8aYASnhvVW44RDEoDVYgqomWHO6PaDpjtKfRKoaHD2gAHjhi12jKJteSMUqCakYtqddTVQW7EPrqdjL9EkE4cEiGOQsbsYGuEYqZjHQwUWuh6zTglRZgMDLAlBFDRen_U2k9qZzQYn6Pcnoie3ni3FmO4ExhxxPHQFoU39woxfJ9MymLnEpjtVnpTHBQtJ4wQ1vG52et_0E2Yoi9eFQoPpG97Sv9Soyw_cN6G0hhmUbEccHk7bQ9tF_-hytZm5yB4Y13JnxS8PSkoTDY_8yinlMTqy-dTtjmyEENK0dgHQzAS8_SJw_QJSGKevsK_euziA_1n1shvyCLVCA</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Vorapatratorn, Surapol</creator><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240125</creationdate><title>Enhancing monitoring of suspicious activities with AI-based and big data fusion</title><author>Vorapatratorn, Surapol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-b6f910c8bdc5b05b3da414eb24c7f65c6bb0841dec9c9075fdf7a1da9755c5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications programs</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Automobiles</topic><topic>Big Data</topic><topic>Classification</topic><topic>Data integration</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Data retrieval</topic><topic>Data Science</topic><topic>Data warehouse</topic><topic>Database management systems</topic><topic>Decision trees</topic><topic>Facial recognition technology</topic><topic>Hadoop hive</topic><topic>Information sources</topic><topic>Internet software</topic><topic>Machine learning</topic><topic>Metadata</topic><topic>National security</topic><topic>Security programs</topic><topic>Storage capacity</topic><topic>Surveillance</topic><topic>Tourism</topic><topic>User interfaces</topic><topic>Web application</topic><topic>Web applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorapatratorn, Surapol</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ. Computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorapatratorn, Surapol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing monitoring of suspicious activities with AI-based and big data fusion</atitle><jtitle>PeerJ. Computer science</jtitle><addtitle>PeerJ Comput Sci</addtitle><date>2024-01-25</date><risdate>2024</risdate><volume>10</volume><spage>e1741</spage><epage>e1741</epage><pages>e1741-e1741</pages><artnum>e1741</artnum><issn>2376-5992</issn><eissn>2376-5992</eissn><abstract>This study provides an AI-based detection tool for the surveillance of suspicious activities using data fusion. The system leverages time, location, and specific data pertaining to individuals, objects, and vehicles associated with the agency. The study's training data was obtained from Thailand's military institution. The study focuses on comparing the efficiency between MySQL and Apache Hive for big data processing. According to the findings, MySQL is better suited for quick data retrieval and low storage capacity, while Hive demonstrates higher scalabilities for larger datasets. Furthermore, the study explores the practical utilization of web applications interfaces, enabling real-time display, analysis, and identification suspicious activity results. The web application, built with NuxtJS and MySQL, includes statistics charts and maps that show the status of suspicious items, cars, and people, as well as data filtering options. The system utilizes machine-learning algorithms to train the suspicious identification model, with the best-performing algorithms being the decision tree, reaching 98.867% classification accuracy.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>38435556</pmid><doi>10.7717/peerj-cs.1741</doi><tpages>e1741</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2376-5992
ispartof PeerJ. Computer science, 2024-01, Vol.10, p.e1741-e1741, Article e1741
issn 2376-5992
2376-5992
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b7e474c85c2c46d79531de387c1f33c0
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Applications programs
Artificial Intelligence
Automation
Automobiles
Big Data
Classification
Data integration
Data mining
Data processing
Data retrieval
Data Science
Data warehouse
Database management systems
Decision trees
Facial recognition technology
Hadoop hive
Information sources
Internet software
Machine learning
Metadata
National security
Security programs
Storage capacity
Surveillance
Tourism
User interfaces
Web application
Web applications
title Enhancing monitoring of suspicious activities with AI-based and big data fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20monitoring%20of%20suspicious%20activities%20with%20AI-based%20and%20big%20data%20fusion&rft.jtitle=PeerJ.%20Computer%20science&rft.au=Vorapatratorn,%20Surapol&rft.date=2024-01-25&rft.volume=10&rft.spage=e1741&rft.epage=e1741&rft.pages=e1741-e1741&rft.artnum=e1741&rft.issn=2376-5992&rft.eissn=2376-5992&rft_id=info:doi/10.7717/peerj-cs.1741&rft_dat=%3Cgale_doaj_%3EA813875282%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-b6f910c8bdc5b05b3da414eb24c7f65c6bb0841dec9c9075fdf7a1da9755c5d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918362655&rft_id=info:pmid/38435556&rft_galeid=A813875282&rfr_iscdi=true