Loading…
Enhancing monitoring of suspicious activities with AI-based and big data fusion
This study provides an AI-based detection tool for the surveillance of suspicious activities using data fusion. The system leverages time, location, and specific data pertaining to individuals, objects, and vehicles associated with the agency. The study's training data was obtained from Thailan...
Saved in:
Published in: | PeerJ. Computer science 2024-01, Vol.10, p.e1741-e1741, Article e1741 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c539t-b6f910c8bdc5b05b3da414eb24c7f65c6bb0841dec9c9075fdf7a1da9755c5d73 |
container_end_page | e1741 |
container_issue | |
container_start_page | e1741 |
container_title | PeerJ. Computer science |
container_volume | 10 |
creator | Vorapatratorn, Surapol |
description | This study provides an AI-based detection tool for the surveillance of suspicious activities using data fusion. The system leverages time, location, and specific data pertaining to individuals, objects, and vehicles associated with the agency. The study's training data was obtained from Thailand's military institution. The study focuses on comparing the efficiency between MySQL and Apache Hive for big data processing. According to the findings, MySQL is better suited for quick data retrieval and low storage capacity, while Hive demonstrates higher scalabilities for larger datasets. Furthermore, the study explores the practical utilization of web applications interfaces, enabling real-time display, analysis, and identification suspicious activity results. The web application, built with NuxtJS and MySQL, includes statistics charts and maps that show the status of suspicious items, cars, and people, as well as data filtering options. The system utilizes machine-learning algorithms to train the suspicious identification model, with the best-performing algorithms being the decision tree, reaching 98.867% classification accuracy. |
doi_str_mv | 10.7717/peerj-cs.1741 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b7e474c85c2c46d79531de387c1f33c0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813875282</galeid><doaj_id>oai_doaj_org_article_b7e474c85c2c46d79531de387c1f33c0</doaj_id><sourcerecordid>A813875282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-b6f910c8bdc5b05b3da414eb24c7f65c6bb0841dec9c9075fdf7a1da9755c5d73</originalsourceid><addsrcrecordid>eNptks9vFCEUxydGY5vao1cziRc9zArDMAwns2mqbtKkiT_OBB4wy2YXVmCq_vcyu7V2jXDg5fF53wffvKp6idGCMcze7Y2JmwbSArMOP6nOW8L6hnLePn0Un1WXKW0QQpjisvjz6owMHaGU9ufV7bVfSw_Oj_UueJdDnMNg6zSlvQMXplRLyO7OZWdS_cPldb1cNUomo2vpda3cWGuZZW2n5IJ_UT2zcpvM5f15UX37cP316lNzc_txdbW8aYASnhvVW44RDEoDVYgqomWHO6PaDpjtKfRKoaHD2gAHjhi12jKJteSMUqCakYtqddTVQW7EPrqdjL9EkE4cEiGOQsbsYGuEYqZjHQwUWuh6zTglRZgMDLAlBFDRen_U2k9qZzQYn6Pcnoie3ni3FmO4ExhxxPHQFoU39woxfJ9MymLnEpjtVnpTHBQtJ4wQ1vG52et_0E2Yoi9eFQoPpG97Sv9Soyw_cN6G0hhmUbEccHk7bQ9tF_-hytZm5yB4Y13JnxS8PSkoTDY_8yinlMTqy-dTtjmyEENK0dgHQzAS8_SJw_QJSGKevsK_euziA_1n1shvyCLVCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918362655</pqid></control><display><type>article</type><title>Enhancing monitoring of suspicious activities with AI-based and big data fusion</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Vorapatratorn, Surapol</creator><creatorcontrib>Vorapatratorn, Surapol</creatorcontrib><description>This study provides an AI-based detection tool for the surveillance of suspicious activities using data fusion. The system leverages time, location, and specific data pertaining to individuals, objects, and vehicles associated with the agency. The study's training data was obtained from Thailand's military institution. The study focuses on comparing the efficiency between MySQL and Apache Hive for big data processing. According to the findings, MySQL is better suited for quick data retrieval and low storage capacity, while Hive demonstrates higher scalabilities for larger datasets. Furthermore, the study explores the practical utilization of web applications interfaces, enabling real-time display, analysis, and identification suspicious activity results. The web application, built with NuxtJS and MySQL, includes statistics charts and maps that show the status of suspicious items, cars, and people, as well as data filtering options. The system utilizes machine-learning algorithms to train the suspicious identification model, with the best-performing algorithms being the decision tree, reaching 98.867% classification accuracy.</description><identifier>ISSN: 2376-5992</identifier><identifier>EISSN: 2376-5992</identifier><identifier>DOI: 10.7717/peerj-cs.1741</identifier><identifier>PMID: 38435556</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Algorithms ; Applications programs ; Artificial Intelligence ; Automation ; Automobiles ; Big Data ; Classification ; Data integration ; Data mining ; Data processing ; Data retrieval ; Data Science ; Data warehouse ; Database management systems ; Decision trees ; Facial recognition technology ; Hadoop hive ; Information sources ; Internet software ; Machine learning ; Metadata ; National security ; Security programs ; Storage capacity ; Surveillance ; Tourism ; User interfaces ; Web application ; Web applications</subject><ispartof>PeerJ. Computer science, 2024-01, Vol.10, p.e1741-e1741, Article e1741</ispartof><rights>2024 Vorapatratorn.</rights><rights>COPYRIGHT 2024 PeerJ. Ltd.</rights><rights>2024 Vorapatratorn. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Vorapatratorn 2024 Vorapatratorn</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c539t-b6f910c8bdc5b05b3da414eb24c7f65c6bb0841dec9c9075fdf7a1da9755c5d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918362655/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918362655?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38435556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vorapatratorn, Surapol</creatorcontrib><title>Enhancing monitoring of suspicious activities with AI-based and big data fusion</title><title>PeerJ. Computer science</title><addtitle>PeerJ Comput Sci</addtitle><description>This study provides an AI-based detection tool for the surveillance of suspicious activities using data fusion. The system leverages time, location, and specific data pertaining to individuals, objects, and vehicles associated with the agency. The study's training data was obtained from Thailand's military institution. The study focuses on comparing the efficiency between MySQL and Apache Hive for big data processing. According to the findings, MySQL is better suited for quick data retrieval and low storage capacity, while Hive demonstrates higher scalabilities for larger datasets. Furthermore, the study explores the practical utilization of web applications interfaces, enabling real-time display, analysis, and identification suspicious activity results. The web application, built with NuxtJS and MySQL, includes statistics charts and maps that show the status of suspicious items, cars, and people, as well as data filtering options. The system utilizes machine-learning algorithms to train the suspicious identification model, with the best-performing algorithms being the decision tree, reaching 98.867% classification accuracy.</description><subject>Algorithms</subject><subject>Applications programs</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Automobiles</subject><subject>Big Data</subject><subject>Classification</subject><subject>Data integration</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Data retrieval</subject><subject>Data Science</subject><subject>Data warehouse</subject><subject>Database management systems</subject><subject>Decision trees</subject><subject>Facial recognition technology</subject><subject>Hadoop hive</subject><subject>Information sources</subject><subject>Internet software</subject><subject>Machine learning</subject><subject>Metadata</subject><subject>National security</subject><subject>Security programs</subject><subject>Storage capacity</subject><subject>Surveillance</subject><subject>Tourism</subject><subject>User interfaces</subject><subject>Web application</subject><subject>Web applications</subject><issn>2376-5992</issn><issn>2376-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9vFCEUxydGY5vao1cziRc9zArDMAwns2mqbtKkiT_OBB4wy2YXVmCq_vcyu7V2jXDg5fF53wffvKp6idGCMcze7Y2JmwbSArMOP6nOW8L6hnLePn0Un1WXKW0QQpjisvjz6owMHaGU9ufV7bVfSw_Oj_UueJdDnMNg6zSlvQMXplRLyO7OZWdS_cPldb1cNUomo2vpda3cWGuZZW2n5IJ_UT2zcpvM5f15UX37cP316lNzc_txdbW8aYASnhvVW44RDEoDVYgqomWHO6PaDpjtKfRKoaHD2gAHjhi12jKJteSMUqCakYtqddTVQW7EPrqdjL9EkE4cEiGOQsbsYGuEYqZjHQwUWuh6zTglRZgMDLAlBFDRen_U2k9qZzQYn6Pcnoie3ni3FmO4ExhxxPHQFoU39woxfJ9MymLnEpjtVnpTHBQtJ4wQ1vG52et_0E2Yoi9eFQoPpG97Sv9Soyw_cN6G0hhmUbEccHk7bQ9tF_-hytZm5yB4Y13JnxS8PSkoTDY_8yinlMTqy-dTtjmyEENK0dgHQzAS8_SJw_QJSGKevsK_euziA_1n1shvyCLVCA</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Vorapatratorn, Surapol</creator><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240125</creationdate><title>Enhancing monitoring of suspicious activities with AI-based and big data fusion</title><author>Vorapatratorn, Surapol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-b6f910c8bdc5b05b3da414eb24c7f65c6bb0841dec9c9075fdf7a1da9755c5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications programs</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Automobiles</topic><topic>Big Data</topic><topic>Classification</topic><topic>Data integration</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Data retrieval</topic><topic>Data Science</topic><topic>Data warehouse</topic><topic>Database management systems</topic><topic>Decision trees</topic><topic>Facial recognition technology</topic><topic>Hadoop hive</topic><topic>Information sources</topic><topic>Internet software</topic><topic>Machine learning</topic><topic>Metadata</topic><topic>National security</topic><topic>Security programs</topic><topic>Storage capacity</topic><topic>Surveillance</topic><topic>Tourism</topic><topic>User interfaces</topic><topic>Web application</topic><topic>Web applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorapatratorn, Surapol</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ. Computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorapatratorn, Surapol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing monitoring of suspicious activities with AI-based and big data fusion</atitle><jtitle>PeerJ. Computer science</jtitle><addtitle>PeerJ Comput Sci</addtitle><date>2024-01-25</date><risdate>2024</risdate><volume>10</volume><spage>e1741</spage><epage>e1741</epage><pages>e1741-e1741</pages><artnum>e1741</artnum><issn>2376-5992</issn><eissn>2376-5992</eissn><abstract>This study provides an AI-based detection tool for the surveillance of suspicious activities using data fusion. The system leverages time, location, and specific data pertaining to individuals, objects, and vehicles associated with the agency. The study's training data was obtained from Thailand's military institution. The study focuses on comparing the efficiency between MySQL and Apache Hive for big data processing. According to the findings, MySQL is better suited for quick data retrieval and low storage capacity, while Hive demonstrates higher scalabilities for larger datasets. Furthermore, the study explores the practical utilization of web applications interfaces, enabling real-time display, analysis, and identification suspicious activity results. The web application, built with NuxtJS and MySQL, includes statistics charts and maps that show the status of suspicious items, cars, and people, as well as data filtering options. The system utilizes machine-learning algorithms to train the suspicious identification model, with the best-performing algorithms being the decision tree, reaching 98.867% classification accuracy.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>38435556</pmid><doi>10.7717/peerj-cs.1741</doi><tpages>e1741</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2376-5992 |
ispartof | PeerJ. Computer science, 2024-01, Vol.10, p.e1741-e1741, Article e1741 |
issn | 2376-5992 2376-5992 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b7e474c85c2c46d79531de387c1f33c0 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Applications programs Artificial Intelligence Automation Automobiles Big Data Classification Data integration Data mining Data processing Data retrieval Data Science Data warehouse Database management systems Decision trees Facial recognition technology Hadoop hive Information sources Internet software Machine learning Metadata National security Security programs Storage capacity Surveillance Tourism User interfaces Web application Web applications |
title | Enhancing monitoring of suspicious activities with AI-based and big data fusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20monitoring%20of%20suspicious%20activities%20with%20AI-based%20and%20big%20data%20fusion&rft.jtitle=PeerJ.%20Computer%20science&rft.au=Vorapatratorn,%20Surapol&rft.date=2024-01-25&rft.volume=10&rft.spage=e1741&rft.epage=e1741&rft.pages=e1741-e1741&rft.artnum=e1741&rft.issn=2376-5992&rft.eissn=2376-5992&rft_id=info:doi/10.7717/peerj-cs.1741&rft_dat=%3Cgale_doaj_%3EA813875282%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-b6f910c8bdc5b05b3da414eb24c7f65c6bb0841dec9c9075fdf7a1da9755c5d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918362655&rft_id=info:pmid/38435556&rft_galeid=A813875282&rfr_iscdi=true |