Loading…

Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7

The discovery of superconductivity with a critical temperature of about 80 K in La 3 Ni 2 O 7 single crystals under pressure has received enormous attention. La 3 Ni 2 O 7 is not superconducting under ambient pressure but exhibits a transition at T   ∗  ≃ 115 K. Understanding the electronic correlat...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-08, Vol.15 (1), p.7570-8, Article 7570
Main Authors: Liu, Zhe, Huo, Mengwu, Li, Jie, Li, Qing, Liu, Yuecong, Dai, Yaomin, Zhou, Xiaoxiang, Hao, Jiahao, Lu, Yi, Wang, Meng, Wen, Hai-Hu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c399t-52a685f3ef8fc3bb47183f22ece0c2fcb7c647d192ffae1cf4cefc548feb38203
container_end_page 8
container_issue 1
container_start_page 7570
container_title Nature communications
container_volume 15
creator Liu, Zhe
Huo, Mengwu
Li, Jie
Li, Qing
Liu, Yuecong
Dai, Yaomin
Zhou, Xiaoxiang
Hao, Jiahao
Lu, Yi
Wang, Meng
Wen, Hai-Hu
description The discovery of superconductivity with a critical temperature of about 80 K in La 3 Ni 2 O 7 single crystals under pressure has received enormous attention. La 3 Ni 2 O 7 is not superconducting under ambient pressure but exhibits a transition at T   ∗  ≃ 115 K. Understanding the electronic correlations and charge dynamics is an important step towards the origin of superconductivity and other instabilities. Here, our optical study shows that La 3 Ni 2 O 7 features strong electronic correlations which significantly reduce the electron’s kinetic energy and place this system in the proximity of the Mott phase. The low-frequency optical conductivity reveals two Drude components arising from multiple bands at the Fermi level. The transition at T   ∗ removes the Drude component exhibiting non-Fermi liquid behavior, whereas the one with Fermi-liquid behavior is barely affected. These observations in combination with theoretical results suggest that the Fermi surface dominated by the Ni- d 3 z 2 − r 2 orbital is removed due to the transition at T   ∗ . Our experimental results provide pivotal information for understanding the transition at T   ∗ and superconductivity in La 3 Ni 2 O 7 . The bilayer nickelate La 3 Ni 2 O 7 was recently shown to be superconducting at high-pressure. Here the authors reveal strong electronic correlations and the opening of a partial gap, providing key information for understanding the nature of the density-wavelike transition at ambient pressure and superconductivity in this compound.
doi_str_mv 10.1038/s41467-024-52001-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b7e71182bc0e4c068d1fd223220d9194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b7e71182bc0e4c068d1fd223220d9194</doaj_id><sourcerecordid>3099854884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-52a685f3ef8fc3bb47183f22ece0c2fcb7c647d192ffae1cf4cefc548feb38203</originalsourceid><addsrcrecordid>eNp9kc1u1DAURiMEElXpC7CyxIZNwH9J7BVCVYGRRnQDa8u5uZ568NiDnUHq29eZVEBZ4I2t-NzjT_ma5jWj7xgV6n2RTPZDS7lsO04pa7tnzQWnkrVs4OL5X-eXzVUpe1qX0ExJedFsbgLCnFP0QCDljMHOPsVCbJzI0ebZ20B29kh8JPMdktEHe4-ZVP7HwiLZWvHV89vhVfPC2VDw6nG_bL5_uvl2_aXd3n7eXH_ctiC0nmtC26vOCXTKgRhHOTAlHOcISIE7GAfo5TAxzZ2zyMBJQAedVA5HoTgVl81m9U7J7s0x-4PN9yZZb84fUt6ZJTYENOOAA2OKj0BRAu3VxNzEueCcTpppWV0fVtfxNB5wAoxztuGJ9OlN9Hdml34ZxkTfaaWr4e2jIaefJyyzOfgCGIKNmE7FCKq1qunV8tibf9B9OuVY_9WZ4rRiC8VXCnIqJaP7nYZRs9Rt1rpNrduc6zZdHRLrUKlw3GH-o_7P1AMqD60N</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099205484</pqid></control><display><type>article</type><title>Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Liu, Zhe ; Huo, Mengwu ; Li, Jie ; Li, Qing ; Liu, Yuecong ; Dai, Yaomin ; Zhou, Xiaoxiang ; Hao, Jiahao ; Lu, Yi ; Wang, Meng ; Wen, Hai-Hu</creator><creatorcontrib>Liu, Zhe ; Huo, Mengwu ; Li, Jie ; Li, Qing ; Liu, Yuecong ; Dai, Yaomin ; Zhou, Xiaoxiang ; Hao, Jiahao ; Lu, Yi ; Wang, Meng ; Wen, Hai-Hu</creatorcontrib><description>The discovery of superconductivity with a critical temperature of about 80 K in La 3 Ni 2 O 7 single crystals under pressure has received enormous attention. La 3 Ni 2 O 7 is not superconducting under ambient pressure but exhibits a transition at T   ∗  ≃ 115 K. Understanding the electronic correlations and charge dynamics is an important step towards the origin of superconductivity and other instabilities. Here, our optical study shows that La 3 Ni 2 O 7 features strong electronic correlations which significantly reduce the electron’s kinetic energy and place this system in the proximity of the Mott phase. The low-frequency optical conductivity reveals two Drude components arising from multiple bands at the Fermi level. The transition at T   ∗ removes the Drude component exhibiting non-Fermi liquid behavior, whereas the one with Fermi-liquid behavior is barely affected. These observations in combination with theoretical results suggest that the Fermi surface dominated by the Ni- d 3 z 2 − r 2 orbital is removed due to the transition at T   ∗ . Our experimental results provide pivotal information for understanding the transition at T   ∗ and superconductivity in La 3 Ni 2 O 7 . The bilayer nickelate La 3 Ni 2 O 7 was recently shown to be superconducting at high-pressure. Here the authors reveal strong electronic correlations and the opening of a partial gap, providing key information for understanding the nature of the density-wavelike transition at ambient pressure and superconductivity in this compound.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-52001-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1003 ; 639/301/119/995 ; Band theory ; Correlation ; Crystals ; Fermi liquids ; Fermi surfaces ; Humanities and Social Sciences ; Kinetic energy ; multidisciplinary ; Pressure ; Science ; Science (multidisciplinary) ; Single crystals ; Superconductivity</subject><ispartof>Nature communications, 2024-08, Vol.15 (1), p.7570-8, Article 7570</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-52a685f3ef8fc3bb47183f22ece0c2fcb7c647d192ffae1cf4cefc548feb38203</cites><orcidid>0000-0002-8232-2331 ; 0000-0003-0093-1625 ; 0000-0001-9445-641X ; 0000-0002-2464-3161 ; 0000-0001-9612-4718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3099205484/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3099205484?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Huo, Mengwu</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Liu, Yuecong</creatorcontrib><creatorcontrib>Dai, Yaomin</creatorcontrib><creatorcontrib>Zhou, Xiaoxiang</creatorcontrib><creatorcontrib>Hao, Jiahao</creatorcontrib><creatorcontrib>Lu, Yi</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Wen, Hai-Hu</creatorcontrib><title>Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>The discovery of superconductivity with a critical temperature of about 80 K in La 3 Ni 2 O 7 single crystals under pressure has received enormous attention. La 3 Ni 2 O 7 is not superconducting under ambient pressure but exhibits a transition at T   ∗  ≃ 115 K. Understanding the electronic correlations and charge dynamics is an important step towards the origin of superconductivity and other instabilities. Here, our optical study shows that La 3 Ni 2 O 7 features strong electronic correlations which significantly reduce the electron’s kinetic energy and place this system in the proximity of the Mott phase. The low-frequency optical conductivity reveals two Drude components arising from multiple bands at the Fermi level. The transition at T   ∗ removes the Drude component exhibiting non-Fermi liquid behavior, whereas the one with Fermi-liquid behavior is barely affected. These observations in combination with theoretical results suggest that the Fermi surface dominated by the Ni- d 3 z 2 − r 2 orbital is removed due to the transition at T   ∗ . Our experimental results provide pivotal information for understanding the transition at T   ∗ and superconductivity in La 3 Ni 2 O 7 . The bilayer nickelate La 3 Ni 2 O 7 was recently shown to be superconducting at high-pressure. Here the authors reveal strong electronic correlations and the opening of a partial gap, providing key information for understanding the nature of the density-wavelike transition at ambient pressure and superconductivity in this compound.</description><subject>639/301/119/1003</subject><subject>639/301/119/995</subject><subject>Band theory</subject><subject>Correlation</subject><subject>Crystals</subject><subject>Fermi liquids</subject><subject>Fermi surfaces</subject><subject>Humanities and Social Sciences</subject><subject>Kinetic energy</subject><subject>multidisciplinary</subject><subject>Pressure</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Single crystals</subject><subject>Superconductivity</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1DAURiMEElXpC7CyxIZNwH9J7BVCVYGRRnQDa8u5uZ568NiDnUHq29eZVEBZ4I2t-NzjT_ma5jWj7xgV6n2RTPZDS7lsO04pa7tnzQWnkrVs4OL5X-eXzVUpe1qX0ExJedFsbgLCnFP0QCDljMHOPsVCbJzI0ebZ20B29kh8JPMdktEHe4-ZVP7HwiLZWvHV89vhVfPC2VDw6nG_bL5_uvl2_aXd3n7eXH_ctiC0nmtC26vOCXTKgRhHOTAlHOcISIE7GAfo5TAxzZ2zyMBJQAedVA5HoTgVl81m9U7J7s0x-4PN9yZZb84fUt6ZJTYENOOAA2OKj0BRAu3VxNzEueCcTpppWV0fVtfxNB5wAoxztuGJ9OlN9Hdml34ZxkTfaaWr4e2jIaefJyyzOfgCGIKNmE7FCKq1qunV8tibf9B9OuVY_9WZ4rRiC8VXCnIqJaP7nYZRs9Rt1rpNrduc6zZdHRLrUKlw3GH-o_7P1AMqD60N</recordid><startdate>20240831</startdate><enddate>20240831</enddate><creator>Liu, Zhe</creator><creator>Huo, Mengwu</creator><creator>Li, Jie</creator><creator>Li, Qing</creator><creator>Liu, Yuecong</creator><creator>Dai, Yaomin</creator><creator>Zhou, Xiaoxiang</creator><creator>Hao, Jiahao</creator><creator>Lu, Yi</creator><creator>Wang, Meng</creator><creator>Wen, Hai-Hu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8232-2331</orcidid><orcidid>https://orcid.org/0000-0003-0093-1625</orcidid><orcidid>https://orcid.org/0000-0001-9445-641X</orcidid><orcidid>https://orcid.org/0000-0002-2464-3161</orcidid><orcidid>https://orcid.org/0000-0001-9612-4718</orcidid></search><sort><creationdate>20240831</creationdate><title>Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7</title><author>Liu, Zhe ; Huo, Mengwu ; Li, Jie ; Li, Qing ; Liu, Yuecong ; Dai, Yaomin ; Zhou, Xiaoxiang ; Hao, Jiahao ; Lu, Yi ; Wang, Meng ; Wen, Hai-Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-52a685f3ef8fc3bb47183f22ece0c2fcb7c647d192ffae1cf4cefc548feb38203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/119/1003</topic><topic>639/301/119/995</topic><topic>Band theory</topic><topic>Correlation</topic><topic>Crystals</topic><topic>Fermi liquids</topic><topic>Fermi surfaces</topic><topic>Humanities and Social Sciences</topic><topic>Kinetic energy</topic><topic>multidisciplinary</topic><topic>Pressure</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Single crystals</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Huo, Mengwu</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Liu, Yuecong</creatorcontrib><creatorcontrib>Dai, Yaomin</creatorcontrib><creatorcontrib>Zhou, Xiaoxiang</creatorcontrib><creatorcontrib>Hao, Jiahao</creatorcontrib><creatorcontrib>Lu, Yi</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Wen, Hai-Hu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Proquest Health &amp; Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhe</au><au>Huo, Mengwu</au><au>Li, Jie</au><au>Li, Qing</au><au>Liu, Yuecong</au><au>Dai, Yaomin</au><au>Zhou, Xiaoxiang</au><au>Hao, Jiahao</au><au>Lu, Yi</au><au>Wang, Meng</au><au>Wen, Hai-Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2024-08-31</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>7570</spage><epage>8</epage><pages>7570-8</pages><artnum>7570</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The discovery of superconductivity with a critical temperature of about 80 K in La 3 Ni 2 O 7 single crystals under pressure has received enormous attention. La 3 Ni 2 O 7 is not superconducting under ambient pressure but exhibits a transition at T   ∗  ≃ 115 K. Understanding the electronic correlations and charge dynamics is an important step towards the origin of superconductivity and other instabilities. Here, our optical study shows that La 3 Ni 2 O 7 features strong electronic correlations which significantly reduce the electron’s kinetic energy and place this system in the proximity of the Mott phase. The low-frequency optical conductivity reveals two Drude components arising from multiple bands at the Fermi level. The transition at T   ∗ removes the Drude component exhibiting non-Fermi liquid behavior, whereas the one with Fermi-liquid behavior is barely affected. These observations in combination with theoretical results suggest that the Fermi surface dominated by the Ni- d 3 z 2 − r 2 orbital is removed due to the transition at T   ∗ . Our experimental results provide pivotal information for understanding the transition at T   ∗ and superconductivity in La 3 Ni 2 O 7 . The bilayer nickelate La 3 Ni 2 O 7 was recently shown to be superconducting at high-pressure. Here the authors reveal strong electronic correlations and the opening of a partial gap, providing key information for understanding the nature of the density-wavelike transition at ambient pressure and superconductivity in this compound.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41467-024-52001-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8232-2331</orcidid><orcidid>https://orcid.org/0000-0003-0093-1625</orcidid><orcidid>https://orcid.org/0000-0001-9445-641X</orcidid><orcidid>https://orcid.org/0000-0002-2464-3161</orcidid><orcidid>https://orcid.org/0000-0001-9612-4718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-08, Vol.15 (1), p.7570-8, Article 7570
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b7e71182bc0e4c068d1fd223220d9194
source Open Access: PubMed Central; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/119/1003
639/301/119/995
Band theory
Correlation
Crystals
Fermi liquids
Fermi surfaces
Humanities and Social Sciences
Kinetic energy
multidisciplinary
Pressure
Science
Science (multidisciplinary)
Single crystals
Superconductivity
title Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20correlations%20and%20partial%20gap%20in%20the%20bilayer%20nickelate%20La3Ni2O7&rft.jtitle=Nature%20communications&rft.au=Liu,%20Zhe&rft.date=2024-08-31&rft.volume=15&rft.issue=1&rft.spage=7570&rft.epage=8&rft.pages=7570-8&rft.artnum=7570&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-52001-5&rft_dat=%3Cproquest_doaj_%3E3099854884%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-52a685f3ef8fc3bb47183f22ece0c2fcb7c647d192ffae1cf4cefc548feb38203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3099205484&rft_id=info:pmid/&rfr_iscdi=true