Loading…

AI-Enhanced design of excavator engine room cooling system using computational fluid dynamics and artificial neural networks

Excavators mainly perform high-load operations in fixed positions, so the stability of their performance depends solely on their cooling system. In this study, computational fluid dynamics (CFD) analysis was conducted using Fluent 2022 R22 software to analyze the cooling system in the engine room of...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in thermal engineering 2024-02, Vol.54, p.103959, Article 103959
Main Authors: Kwon, Tae Woo, Kim, Hui Geun, Lee, Jae Seok, Jeong, Chan Hyeok, Choi, You Chul, Ha, Man Yeong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c364t-64230e8c8816e4f5ce4c554e0e5e13be450a0252bf3622e6f03d191384b51fe63
container_end_page
container_issue
container_start_page 103959
container_title Case studies in thermal engineering
container_volume 54
creator Kwon, Tae Woo
Kim, Hui Geun
Lee, Jae Seok
Jeong, Chan Hyeok
Choi, You Chul
Ha, Man Yeong
description Excavators mainly perform high-load operations in fixed positions, so the stability of their performance depends solely on their cooling system. In this study, computational fluid dynamics (CFD) analysis was conducted using Fluent 2022 R22 software to analyze the cooling system in the engine room of an excavator. A comprehensive parametric study was performed, considering different cooling fan layouts and operating rates, to establish a database of cooling performance data for the excavator. Artificial neural network (ANN) models were trained on the constructed database and were then applied to design the cooling system and predict the performance. Further, optimal designs that maximized the cooling performance and energy efficiency were selected. This study demonstrates the feasibility of using ANN models to quickly and accurately predict and design the cooling system of an excavator in a cost-effective manner.
doi_str_mv 10.1016/j.csite.2023.103959
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b7f66298623b48399d8f32aa32e0ec49</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214157X23012650</els_id><doaj_id>oai_doaj_org_article_b7f66298623b48399d8f32aa32e0ec49</doaj_id><sourcerecordid>S2214157X23012650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-64230e8c8816e4f5ce4c554e0e5e13be450a0252bf3622e6f03d191384b51fe63</originalsourceid><addsrcrecordid>eNp9kc1KAzEUhQdRULRP4CYvMDX_nVm4kFK1ILhRcBcymZuaOpNIklYLPrwzrYgrVzc54Xz33pyiuCR4SjCRV-upSS7DlGLKBoXVoj4qziglvCRi9nL853xaTFJaY4zJjFWE87Pi62ZZLvyr9gZa1EJyK4-CRfBp9FbnEBH4lfOAYgg9MiF0zq9Q2qUMPdqk8WJC_77JOrvgdYdst3EDaOd170xC2rdIx-ysM2549bCJ-5I_QnxLF8WJ1V2CyU89L55vF0_z-_Lh8W45v3koDZM8l5JThqEyVUUkcCsMcCMEBwwCCGuAC6wxFbSxTFIK0mLWkpqwijeCWJDsvFgeuG3Qa_UeXa_jTgXt1F4IcaXGIU0HqplZKWldScoaXrG6bivLqNaMDu0MrwcWO7BMDClFsL88gtWYh1qrfR5qzEMd8hhc1wcXDGtuHUSVjIPx010Ek4c53L_-b8oXllc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AI-Enhanced design of excavator engine room cooling system using computational fluid dynamics and artificial neural networks</title><source>ScienceDirect Journals</source><creator>Kwon, Tae Woo ; Kim, Hui Geun ; Lee, Jae Seok ; Jeong, Chan Hyeok ; Choi, You Chul ; Ha, Man Yeong</creator><creatorcontrib>Kwon, Tae Woo ; Kim, Hui Geun ; Lee, Jae Seok ; Jeong, Chan Hyeok ; Choi, You Chul ; Ha, Man Yeong</creatorcontrib><description>Excavators mainly perform high-load operations in fixed positions, so the stability of their performance depends solely on their cooling system. In this study, computational fluid dynamics (CFD) analysis was conducted using Fluent 2022 R22 software to analyze the cooling system in the engine room of an excavator. A comprehensive parametric study was performed, considering different cooling fan layouts and operating rates, to establish a database of cooling performance data for the excavator. Artificial neural network (ANN) models were trained on the constructed database and were then applied to design the cooling system and predict the performance. Further, optimal designs that maximized the cooling performance and energy efficiency were selected. This study demonstrates the feasibility of using ANN models to quickly and accurately predict and design the cooling system of an excavator in a cost-effective manner.</description><identifier>ISSN: 2214-157X</identifier><identifier>EISSN: 2214-157X</identifier><identifier>DOI: 10.1016/j.csite.2023.103959</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>AI learning ; Artificial neural network ; Computational fluid dynamics ; Cooling system ; Excavator ; Optimization</subject><ispartof>Case studies in thermal engineering, 2024-02, Vol.54, p.103959, Article 103959</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-64230e8c8816e4f5ce4c554e0e5e13be450a0252bf3622e6f03d191384b51fe63</cites><orcidid>0000-0002-2019-5795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2214157X23012650$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3538,27907,27908,45763</link.rule.ids></links><search><creatorcontrib>Kwon, Tae Woo</creatorcontrib><creatorcontrib>Kim, Hui Geun</creatorcontrib><creatorcontrib>Lee, Jae Seok</creatorcontrib><creatorcontrib>Jeong, Chan Hyeok</creatorcontrib><creatorcontrib>Choi, You Chul</creatorcontrib><creatorcontrib>Ha, Man Yeong</creatorcontrib><title>AI-Enhanced design of excavator engine room cooling system using computational fluid dynamics and artificial neural networks</title><title>Case studies in thermal engineering</title><description>Excavators mainly perform high-load operations in fixed positions, so the stability of their performance depends solely on their cooling system. In this study, computational fluid dynamics (CFD) analysis was conducted using Fluent 2022 R22 software to analyze the cooling system in the engine room of an excavator. A comprehensive parametric study was performed, considering different cooling fan layouts and operating rates, to establish a database of cooling performance data for the excavator. Artificial neural network (ANN) models were trained on the constructed database and were then applied to design the cooling system and predict the performance. Further, optimal designs that maximized the cooling performance and energy efficiency were selected. This study demonstrates the feasibility of using ANN models to quickly and accurately predict and design the cooling system of an excavator in a cost-effective manner.</description><subject>AI learning</subject><subject>Artificial neural network</subject><subject>Computational fluid dynamics</subject><subject>Cooling system</subject><subject>Excavator</subject><subject>Optimization</subject><issn>2214-157X</issn><issn>2214-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1KAzEUhQdRULRP4CYvMDX_nVm4kFK1ILhRcBcymZuaOpNIklYLPrwzrYgrVzc54Xz33pyiuCR4SjCRV-upSS7DlGLKBoXVoj4qziglvCRi9nL853xaTFJaY4zJjFWE87Pi62ZZLvyr9gZa1EJyK4-CRfBp9FbnEBH4lfOAYgg9MiF0zq9Q2qUMPdqk8WJC_77JOrvgdYdst3EDaOd170xC2rdIx-ysM2549bCJ-5I_QnxLF8WJ1V2CyU89L55vF0_z-_Lh8W45v3koDZM8l5JThqEyVUUkcCsMcCMEBwwCCGuAC6wxFbSxTFIK0mLWkpqwijeCWJDsvFgeuG3Qa_UeXa_jTgXt1F4IcaXGIU0HqplZKWldScoaXrG6bivLqNaMDu0MrwcWO7BMDClFsL88gtWYh1qrfR5qzEMd8hhc1wcXDGtuHUSVjIPx010Ek4c53L_-b8oXllc</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Kwon, Tae Woo</creator><creator>Kim, Hui Geun</creator><creator>Lee, Jae Seok</creator><creator>Jeong, Chan Hyeok</creator><creator>Choi, You Chul</creator><creator>Ha, Man Yeong</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2019-5795</orcidid></search><sort><creationdate>202402</creationdate><title>AI-Enhanced design of excavator engine room cooling system using computational fluid dynamics and artificial neural networks</title><author>Kwon, Tae Woo ; Kim, Hui Geun ; Lee, Jae Seok ; Jeong, Chan Hyeok ; Choi, You Chul ; Ha, Man Yeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-64230e8c8816e4f5ce4c554e0e5e13be450a0252bf3622e6f03d191384b51fe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AI learning</topic><topic>Artificial neural network</topic><topic>Computational fluid dynamics</topic><topic>Cooling system</topic><topic>Excavator</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Tae Woo</creatorcontrib><creatorcontrib>Kim, Hui Geun</creatorcontrib><creatorcontrib>Lee, Jae Seok</creatorcontrib><creatorcontrib>Jeong, Chan Hyeok</creatorcontrib><creatorcontrib>Choi, You Chul</creatorcontrib><creatorcontrib>Ha, Man Yeong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Case studies in thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Tae Woo</au><au>Kim, Hui Geun</au><au>Lee, Jae Seok</au><au>Jeong, Chan Hyeok</au><au>Choi, You Chul</au><au>Ha, Man Yeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Enhanced design of excavator engine room cooling system using computational fluid dynamics and artificial neural networks</atitle><jtitle>Case studies in thermal engineering</jtitle><date>2024-02</date><risdate>2024</risdate><volume>54</volume><spage>103959</spage><pages>103959-</pages><artnum>103959</artnum><issn>2214-157X</issn><eissn>2214-157X</eissn><abstract>Excavators mainly perform high-load operations in fixed positions, so the stability of their performance depends solely on their cooling system. In this study, computational fluid dynamics (CFD) analysis was conducted using Fluent 2022 R22 software to analyze the cooling system in the engine room of an excavator. A comprehensive parametric study was performed, considering different cooling fan layouts and operating rates, to establish a database of cooling performance data for the excavator. Artificial neural network (ANN) models were trained on the constructed database and were then applied to design the cooling system and predict the performance. Further, optimal designs that maximized the cooling performance and energy efficiency were selected. This study demonstrates the feasibility of using ANN models to quickly and accurately predict and design the cooling system of an excavator in a cost-effective manner.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csite.2023.103959</doi><orcidid>https://orcid.org/0000-0002-2019-5795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-157X
ispartof Case studies in thermal engineering, 2024-02, Vol.54, p.103959, Article 103959
issn 2214-157X
2214-157X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b7f66298623b48399d8f32aa32e0ec49
source ScienceDirect Journals
subjects AI learning
Artificial neural network
Computational fluid dynamics
Cooling system
Excavator
Optimization
title AI-Enhanced design of excavator engine room cooling system using computational fluid dynamics and artificial neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Enhanced%20design%20of%20excavator%20engine%20room%20cooling%20system%20using%20computational%20fluid%20dynamics%20and%20artificial%20neural%20networks&rft.jtitle=Case%20studies%20in%20thermal%20engineering&rft.au=Kwon,%20Tae%20Woo&rft.date=2024-02&rft.volume=54&rft.spage=103959&rft.pages=103959-&rft.artnum=103959&rft.issn=2214-157X&rft.eissn=2214-157X&rft_id=info:doi/10.1016/j.csite.2023.103959&rft_dat=%3Celsevier_doaj_%3ES2214157X23012650%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-64230e8c8816e4f5ce4c554e0e5e13be450a0252bf3622e6f03d191384b51fe63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true