Loading…
AI-Enhanced design of excavator engine room cooling system using computational fluid dynamics and artificial neural networks
Excavators mainly perform high-load operations in fixed positions, so the stability of their performance depends solely on their cooling system. In this study, computational fluid dynamics (CFD) analysis was conducted using Fluent 2022 R22 software to analyze the cooling system in the engine room of...
Saved in:
Published in: | Case studies in thermal engineering 2024-02, Vol.54, p.103959, Article 103959 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-64230e8c8816e4f5ce4c554e0e5e13be450a0252bf3622e6f03d191384b51fe63 |
container_end_page | |
container_issue | |
container_start_page | 103959 |
container_title | Case studies in thermal engineering |
container_volume | 54 |
creator | Kwon, Tae Woo Kim, Hui Geun Lee, Jae Seok Jeong, Chan Hyeok Choi, You Chul Ha, Man Yeong |
description | Excavators mainly perform high-load operations in fixed positions, so the stability of their performance depends solely on their cooling system. In this study, computational fluid dynamics (CFD) analysis was conducted using Fluent 2022 R22 software to analyze the cooling system in the engine room of an excavator. A comprehensive parametric study was performed, considering different cooling fan layouts and operating rates, to establish a database of cooling performance data for the excavator. Artificial neural network (ANN) models were trained on the constructed database and were then applied to design the cooling system and predict the performance. Further, optimal designs that maximized the cooling performance and energy efficiency were selected. This study demonstrates the feasibility of using ANN models to quickly and accurately predict and design the cooling system of an excavator in a cost-effective manner. |
doi_str_mv | 10.1016/j.csite.2023.103959 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b7f66298623b48399d8f32aa32e0ec49</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214157X23012650</els_id><doaj_id>oai_doaj_org_article_b7f66298623b48399d8f32aa32e0ec49</doaj_id><sourcerecordid>S2214157X23012650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-64230e8c8816e4f5ce4c554e0e5e13be450a0252bf3622e6f03d191384b51fe63</originalsourceid><addsrcrecordid>eNp9kc1KAzEUhQdRULRP4CYvMDX_nVm4kFK1ILhRcBcymZuaOpNIklYLPrwzrYgrVzc54Xz33pyiuCR4SjCRV-upSS7DlGLKBoXVoj4qziglvCRi9nL853xaTFJaY4zJjFWE87Pi62ZZLvyr9gZa1EJyK4-CRfBp9FbnEBH4lfOAYgg9MiF0zq9Q2qUMPdqk8WJC_77JOrvgdYdst3EDaOd170xC2rdIx-ysM2549bCJ-5I_QnxLF8WJ1V2CyU89L55vF0_z-_Lh8W45v3koDZM8l5JThqEyVUUkcCsMcCMEBwwCCGuAC6wxFbSxTFIK0mLWkpqwijeCWJDsvFgeuG3Qa_UeXa_jTgXt1F4IcaXGIU0HqplZKWldScoaXrG6bivLqNaMDu0MrwcWO7BMDClFsL88gtWYh1qrfR5qzEMd8hhc1wcXDGtuHUSVjIPx010Ek4c53L_-b8oXllc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AI-Enhanced design of excavator engine room cooling system using computational fluid dynamics and artificial neural networks</title><source>ScienceDirect Journals</source><creator>Kwon, Tae Woo ; Kim, Hui Geun ; Lee, Jae Seok ; Jeong, Chan Hyeok ; Choi, You Chul ; Ha, Man Yeong</creator><creatorcontrib>Kwon, Tae Woo ; Kim, Hui Geun ; Lee, Jae Seok ; Jeong, Chan Hyeok ; Choi, You Chul ; Ha, Man Yeong</creatorcontrib><description>Excavators mainly perform high-load operations in fixed positions, so the stability of their performance depends solely on their cooling system. In this study, computational fluid dynamics (CFD) analysis was conducted using Fluent 2022 R22 software to analyze the cooling system in the engine room of an excavator. A comprehensive parametric study was performed, considering different cooling fan layouts and operating rates, to establish a database of cooling performance data for the excavator. Artificial neural network (ANN) models were trained on the constructed database and were then applied to design the cooling system and predict the performance. Further, optimal designs that maximized the cooling performance and energy efficiency were selected. This study demonstrates the feasibility of using ANN models to quickly and accurately predict and design the cooling system of an excavator in a cost-effective manner.</description><identifier>ISSN: 2214-157X</identifier><identifier>EISSN: 2214-157X</identifier><identifier>DOI: 10.1016/j.csite.2023.103959</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>AI learning ; Artificial neural network ; Computational fluid dynamics ; Cooling system ; Excavator ; Optimization</subject><ispartof>Case studies in thermal engineering, 2024-02, Vol.54, p.103959, Article 103959</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-64230e8c8816e4f5ce4c554e0e5e13be450a0252bf3622e6f03d191384b51fe63</cites><orcidid>0000-0002-2019-5795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2214157X23012650$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3538,27907,27908,45763</link.rule.ids></links><search><creatorcontrib>Kwon, Tae Woo</creatorcontrib><creatorcontrib>Kim, Hui Geun</creatorcontrib><creatorcontrib>Lee, Jae Seok</creatorcontrib><creatorcontrib>Jeong, Chan Hyeok</creatorcontrib><creatorcontrib>Choi, You Chul</creatorcontrib><creatorcontrib>Ha, Man Yeong</creatorcontrib><title>AI-Enhanced design of excavator engine room cooling system using computational fluid dynamics and artificial neural networks</title><title>Case studies in thermal engineering</title><description>Excavators mainly perform high-load operations in fixed positions, so the stability of their performance depends solely on their cooling system. In this study, computational fluid dynamics (CFD) analysis was conducted using Fluent 2022 R22 software to analyze the cooling system in the engine room of an excavator. A comprehensive parametric study was performed, considering different cooling fan layouts and operating rates, to establish a database of cooling performance data for the excavator. Artificial neural network (ANN) models were trained on the constructed database and were then applied to design the cooling system and predict the performance. Further, optimal designs that maximized the cooling performance and energy efficiency were selected. This study demonstrates the feasibility of using ANN models to quickly and accurately predict and design the cooling system of an excavator in a cost-effective manner.</description><subject>AI learning</subject><subject>Artificial neural network</subject><subject>Computational fluid dynamics</subject><subject>Cooling system</subject><subject>Excavator</subject><subject>Optimization</subject><issn>2214-157X</issn><issn>2214-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1KAzEUhQdRULRP4CYvMDX_nVm4kFK1ILhRcBcymZuaOpNIklYLPrwzrYgrVzc54Xz33pyiuCR4SjCRV-upSS7DlGLKBoXVoj4qziglvCRi9nL853xaTFJaY4zJjFWE87Pi62ZZLvyr9gZa1EJyK4-CRfBp9FbnEBH4lfOAYgg9MiF0zq9Q2qUMPdqk8WJC_77JOrvgdYdst3EDaOd170xC2rdIx-ysM2549bCJ-5I_QnxLF8WJ1V2CyU89L55vF0_z-_Lh8W45v3koDZM8l5JThqEyVUUkcCsMcCMEBwwCCGuAC6wxFbSxTFIK0mLWkpqwijeCWJDsvFgeuG3Qa_UeXa_jTgXt1F4IcaXGIU0HqplZKWldScoaXrG6bivLqNaMDu0MrwcWO7BMDClFsL88gtWYh1qrfR5qzEMd8hhc1wcXDGtuHUSVjIPx010Ek4c53L_-b8oXllc</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Kwon, Tae Woo</creator><creator>Kim, Hui Geun</creator><creator>Lee, Jae Seok</creator><creator>Jeong, Chan Hyeok</creator><creator>Choi, You Chul</creator><creator>Ha, Man Yeong</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2019-5795</orcidid></search><sort><creationdate>202402</creationdate><title>AI-Enhanced design of excavator engine room cooling system using computational fluid dynamics and artificial neural networks</title><author>Kwon, Tae Woo ; Kim, Hui Geun ; Lee, Jae Seok ; Jeong, Chan Hyeok ; Choi, You Chul ; Ha, Man Yeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-64230e8c8816e4f5ce4c554e0e5e13be450a0252bf3622e6f03d191384b51fe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AI learning</topic><topic>Artificial neural network</topic><topic>Computational fluid dynamics</topic><topic>Cooling system</topic><topic>Excavator</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Tae Woo</creatorcontrib><creatorcontrib>Kim, Hui Geun</creatorcontrib><creatorcontrib>Lee, Jae Seok</creatorcontrib><creatorcontrib>Jeong, Chan Hyeok</creatorcontrib><creatorcontrib>Choi, You Chul</creatorcontrib><creatorcontrib>Ha, Man Yeong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Case studies in thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Tae Woo</au><au>Kim, Hui Geun</au><au>Lee, Jae Seok</au><au>Jeong, Chan Hyeok</au><au>Choi, You Chul</au><au>Ha, Man Yeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Enhanced design of excavator engine room cooling system using computational fluid dynamics and artificial neural networks</atitle><jtitle>Case studies in thermal engineering</jtitle><date>2024-02</date><risdate>2024</risdate><volume>54</volume><spage>103959</spage><pages>103959-</pages><artnum>103959</artnum><issn>2214-157X</issn><eissn>2214-157X</eissn><abstract>Excavators mainly perform high-load operations in fixed positions, so the stability of their performance depends solely on their cooling system. In this study, computational fluid dynamics (CFD) analysis was conducted using Fluent 2022 R22 software to analyze the cooling system in the engine room of an excavator. A comprehensive parametric study was performed, considering different cooling fan layouts and operating rates, to establish a database of cooling performance data for the excavator. Artificial neural network (ANN) models were trained on the constructed database and were then applied to design the cooling system and predict the performance. Further, optimal designs that maximized the cooling performance and energy efficiency were selected. This study demonstrates the feasibility of using ANN models to quickly and accurately predict and design the cooling system of an excavator in a cost-effective manner.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csite.2023.103959</doi><orcidid>https://orcid.org/0000-0002-2019-5795</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2214-157X |
ispartof | Case studies in thermal engineering, 2024-02, Vol.54, p.103959, Article 103959 |
issn | 2214-157X 2214-157X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b7f66298623b48399d8f32aa32e0ec49 |
source | ScienceDirect Journals |
subjects | AI learning Artificial neural network Computational fluid dynamics Cooling system Excavator Optimization |
title | AI-Enhanced design of excavator engine room cooling system using computational fluid dynamics and artificial neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Enhanced%20design%20of%20excavator%20engine%20room%20cooling%20system%20using%20computational%20fluid%20dynamics%20and%20artificial%20neural%20networks&rft.jtitle=Case%20studies%20in%20thermal%20engineering&rft.au=Kwon,%20Tae%20Woo&rft.date=2024-02&rft.volume=54&rft.spage=103959&rft.pages=103959-&rft.artnum=103959&rft.issn=2214-157X&rft.eissn=2214-157X&rft_id=info:doi/10.1016/j.csite.2023.103959&rft_dat=%3Celsevier_doaj_%3ES2214157X23012650%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-64230e8c8816e4f5ce4c554e0e5e13be450a0252bf3622e6f03d191384b51fe63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |