Loading…
Hydrogen embrittlement micromechanisms and direct observations of hydrogen transportation by dislocations during deformation in a carbon-doped medium entropy alloy
The hydrogen embrittlement micromechanisms and the effect of carbon interstitial on hydrogen distribution were characterized in Fe40Mn40Ni10Cr10 and Fe38Mn41Ni10Cr10C1 medium entropy alloy. Ex-situ microstructural observations revealed that the segregation of carbon on grain boundaries suppresses hy...
Saved in:
Published in: | Journal of materials research and technology 2022-09, Vol.20, p.18-25 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The hydrogen embrittlement micromechanisms and the effect of carbon interstitial on hydrogen distribution were characterized in Fe40Mn40Ni10Cr10 and Fe38Mn41Ni10Cr10C1 medium entropy alloy. Ex-situ microstructural observations revealed that the segregation of carbon on grain boundaries suppresses hydrogen from being trapped in the grain boundaries for carbon-doped alloy before deformation. However, the distribution of hydrogen was similar for both alloys after plastic strain so that the grain boundaries trapped a large fraction of hydrogen during deformation. The fully intergranular fracture mode in the hydrogen affected area of both alloys was explained by the synergy of grain boundary–dislocation reactions and hydrogen-enhanced grain boundary decohesion effects. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2022.07.061 |