Loading…
Understanding solid electrolyte interface formation on graphite and silicon anodes in lithium-ion batteries: Exploring the role of fluoroethylene carbonate
[Display omitted] •FEC builds SEI layer with Li2CO3 and LiF on electrode, whether graphite or silicon.•The durable SEI layer enhances capacity and effectively reduces volume expansion.•FEC prevents the chemical conversion and reductive decomposition of electrolyte.•FEC inhibits dicarboxylate formati...
Saved in:
Published in: | Electrochemistry communications 2024-06, Vol.163, p.107708, Article 107708 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-5972edf20f38d48a90d55c065dc18888543c4041e358f622d8cfcb1a0f703343 |
container_end_page | |
container_issue | |
container_start_page | 107708 |
container_title | Electrochemistry communications |
container_volume | 163 |
creator | Lee, Jinhee Jeong, Ji-Yoon Ha, Jaeyun Kim, Yong-Tae Choi, Jinsub |
description | [Display omitted]
•FEC builds SEI layer with Li2CO3 and LiF on electrode, whether graphite or silicon.•The durable SEI layer enhances capacity and effectively reduces volume expansion.•FEC prevents the chemical conversion and reductive decomposition of electrolyte.•FEC inhibits dicarboxylate formation, thereby preserving electrolyte performance.
This study explores how fluoroethylene carbonate (FEC) influences the solid electrolyte interface (SEI) layer formation during battery cycling process. FEC improves SEI properties, producing a uniform, chemically stable layer enriched with lithium fluoride. This enhances mechanical resilience and electrochemical stability. FEC also suppresses electrolyte deformation and decomposition, maintaining its initial state. The findings highlight the significance and comprehension of electrolyte additives, offering an electrolyte research pathway for improving Li-ion battery performance and durability. |
doi_str_mv | 10.1016/j.elecom.2024.107708 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b8178aff2bfd42eb923b433176851403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1388248124000511</els_id><doaj_id>oai_doaj_org_article_b8178aff2bfd42eb923b433176851403</doaj_id><sourcerecordid>S1388248124000511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-5972edf20f38d48a90d55c065dc18888543c4041e358f622d8cfcb1a0f703343</originalsourceid><addsrcrecordid>eNp9kd9qHCEUxqW00HTTN-iFLzBb_82M04tCCWkSCOQmuRZHj7suri5qSvdZ-rJ1MiGXkQPKp9_vePgQ-kbJlhI6fD9sIYBJxy0jTDRpHIn8gC6oHHlHJ8I-tjOXsmNC0s_oSykHQiibJn6B_j1FC7lUHa2PO1xS8BYvtJpTOFfAPlbIThvALuWjrj5F3GqX9Wnv230z4uKDN03UMVkozYKDr3v_fOyW17OuDeGh_MDXf08h5aVR3QNuHQAnh114TjlB3Z8DRMBG5zlFXeESfXI6FPj6um_Q4-_rx6vb7v7h5u7q131n-DDWrp9GBtYx4ri0QuqJ2L43ZOitobKtXnAjiKDAe-kGxqw0zsxUEzcSzgXfoLsVa5M-qFP2R53PKmmvXoSUd0rn6k0ANUs6Su0cm50VDOaJ8VlwTsdB9lQ02gaJlWVyKiWDe-NRopas1EGtWaklK7Vm1Ww_Vxu0Mf94yKoYD9GA9blF0T7i3wf8B31bonc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding solid electrolyte interface formation on graphite and silicon anodes in lithium-ion batteries: Exploring the role of fluoroethylene carbonate</title><source>ScienceDirect Journals</source><creator>Lee, Jinhee ; Jeong, Ji-Yoon ; Ha, Jaeyun ; Kim, Yong-Tae ; Choi, Jinsub</creator><creatorcontrib>Lee, Jinhee ; Jeong, Ji-Yoon ; Ha, Jaeyun ; Kim, Yong-Tae ; Choi, Jinsub</creatorcontrib><description>[Display omitted]
•FEC builds SEI layer with Li2CO3 and LiF on electrode, whether graphite or silicon.•The durable SEI layer enhances capacity and effectively reduces volume expansion.•FEC prevents the chemical conversion and reductive decomposition of electrolyte.•FEC inhibits dicarboxylate formation, thereby preserving electrolyte performance.
This study explores how fluoroethylene carbonate (FEC) influences the solid electrolyte interface (SEI) layer formation during battery cycling process. FEC improves SEI properties, producing a uniform, chemically stable layer enriched with lithium fluoride. This enhances mechanical resilience and electrochemical stability. FEC also suppresses electrolyte deformation and decomposition, maintaining its initial state. The findings highlight the significance and comprehension of electrolyte additives, offering an electrolyte research pathway for improving Li-ion battery performance and durability.</description><identifier>ISSN: 1388-2481</identifier><identifier>EISSN: 1873-1902</identifier><identifier>DOI: 10.1016/j.elecom.2024.107708</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Dicarboxylate ; Electrolyte decomposition ; Fluoroethylene carbonate ; Lithium-ion battery ; Solid electrolyte interface layer</subject><ispartof>Electrochemistry communications, 2024-06, Vol.163, p.107708, Article 107708</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c367t-5972edf20f38d48a90d55c065dc18888543c4041e358f622d8cfcb1a0f703343</cites><orcidid>0000-0001-9895-6104 ; 0000-0002-7569-5316 ; 0000-0002-9395-1205 ; 0000-0003-1675-7318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Jinhee</creatorcontrib><creatorcontrib>Jeong, Ji-Yoon</creatorcontrib><creatorcontrib>Ha, Jaeyun</creatorcontrib><creatorcontrib>Kim, Yong-Tae</creatorcontrib><creatorcontrib>Choi, Jinsub</creatorcontrib><title>Understanding solid electrolyte interface formation on graphite and silicon anodes in lithium-ion batteries: Exploring the role of fluoroethylene carbonate</title><title>Electrochemistry communications</title><description>[Display omitted]
•FEC builds SEI layer with Li2CO3 and LiF on electrode, whether graphite or silicon.•The durable SEI layer enhances capacity and effectively reduces volume expansion.•FEC prevents the chemical conversion and reductive decomposition of electrolyte.•FEC inhibits dicarboxylate formation, thereby preserving electrolyte performance.
This study explores how fluoroethylene carbonate (FEC) influences the solid electrolyte interface (SEI) layer formation during battery cycling process. FEC improves SEI properties, producing a uniform, chemically stable layer enriched with lithium fluoride. This enhances mechanical resilience and electrochemical stability. FEC also suppresses electrolyte deformation and decomposition, maintaining its initial state. The findings highlight the significance and comprehension of electrolyte additives, offering an electrolyte research pathway for improving Li-ion battery performance and durability.</description><subject>Dicarboxylate</subject><subject>Electrolyte decomposition</subject><subject>Fluoroethylene carbonate</subject><subject>Lithium-ion battery</subject><subject>Solid electrolyte interface layer</subject><issn>1388-2481</issn><issn>1873-1902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kd9qHCEUxqW00HTTN-iFLzBb_82M04tCCWkSCOQmuRZHj7suri5qSvdZ-rJ1MiGXkQPKp9_vePgQ-kbJlhI6fD9sIYBJxy0jTDRpHIn8gC6oHHlHJ8I-tjOXsmNC0s_oSykHQiibJn6B_j1FC7lUHa2PO1xS8BYvtJpTOFfAPlbIThvALuWjrj5F3GqX9Wnv230z4uKDN03UMVkozYKDr3v_fOyW17OuDeGh_MDXf08h5aVR3QNuHQAnh114TjlB3Z8DRMBG5zlFXeESfXI6FPj6um_Q4-_rx6vb7v7h5u7q131n-DDWrp9GBtYx4ri0QuqJ2L43ZOitobKtXnAjiKDAe-kGxqw0zsxUEzcSzgXfoLsVa5M-qFP2R53PKmmvXoSUd0rn6k0ANUs6Su0cm50VDOaJ8VlwTsdB9lQ02gaJlWVyKiWDe-NRopas1EGtWaklK7Vm1Ww_Vxu0Mf94yKoYD9GA9blF0T7i3wf8B31bonc</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Lee, Jinhee</creator><creator>Jeong, Ji-Yoon</creator><creator>Ha, Jaeyun</creator><creator>Kim, Yong-Tae</creator><creator>Choi, Jinsub</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9895-6104</orcidid><orcidid>https://orcid.org/0000-0002-7569-5316</orcidid><orcidid>https://orcid.org/0000-0002-9395-1205</orcidid><orcidid>https://orcid.org/0000-0003-1675-7318</orcidid></search><sort><creationdate>202406</creationdate><title>Understanding solid electrolyte interface formation on graphite and silicon anodes in lithium-ion batteries: Exploring the role of fluoroethylene carbonate</title><author>Lee, Jinhee ; Jeong, Ji-Yoon ; Ha, Jaeyun ; Kim, Yong-Tae ; Choi, Jinsub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-5972edf20f38d48a90d55c065dc18888543c4041e358f622d8cfcb1a0f703343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dicarboxylate</topic><topic>Electrolyte decomposition</topic><topic>Fluoroethylene carbonate</topic><topic>Lithium-ion battery</topic><topic>Solid electrolyte interface layer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jinhee</creatorcontrib><creatorcontrib>Jeong, Ji-Yoon</creatorcontrib><creatorcontrib>Ha, Jaeyun</creatorcontrib><creatorcontrib>Kim, Yong-Tae</creatorcontrib><creatorcontrib>Choi, Jinsub</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Electrochemistry communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jinhee</au><au>Jeong, Ji-Yoon</au><au>Ha, Jaeyun</au><au>Kim, Yong-Tae</au><au>Choi, Jinsub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding solid electrolyte interface formation on graphite and silicon anodes in lithium-ion batteries: Exploring the role of fluoroethylene carbonate</atitle><jtitle>Electrochemistry communications</jtitle><date>2024-06</date><risdate>2024</risdate><volume>163</volume><spage>107708</spage><pages>107708-</pages><artnum>107708</artnum><issn>1388-2481</issn><eissn>1873-1902</eissn><abstract>[Display omitted]
•FEC builds SEI layer with Li2CO3 and LiF on electrode, whether graphite or silicon.•The durable SEI layer enhances capacity and effectively reduces volume expansion.•FEC prevents the chemical conversion and reductive decomposition of electrolyte.•FEC inhibits dicarboxylate formation, thereby preserving electrolyte performance.
This study explores how fluoroethylene carbonate (FEC) influences the solid electrolyte interface (SEI) layer formation during battery cycling process. FEC improves SEI properties, producing a uniform, chemically stable layer enriched with lithium fluoride. This enhances mechanical resilience and electrochemical stability. FEC also suppresses electrolyte deformation and decomposition, maintaining its initial state. The findings highlight the significance and comprehension of electrolyte additives, offering an electrolyte research pathway for improving Li-ion battery performance and durability.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.elecom.2024.107708</doi><orcidid>https://orcid.org/0000-0001-9895-6104</orcidid><orcidid>https://orcid.org/0000-0002-7569-5316</orcidid><orcidid>https://orcid.org/0000-0002-9395-1205</orcidid><orcidid>https://orcid.org/0000-0003-1675-7318</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-2481 |
ispartof | Electrochemistry communications, 2024-06, Vol.163, p.107708, Article 107708 |
issn | 1388-2481 1873-1902 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b8178aff2bfd42eb923b433176851403 |
source | ScienceDirect Journals |
subjects | Dicarboxylate Electrolyte decomposition Fluoroethylene carbonate Lithium-ion battery Solid electrolyte interface layer |
title | Understanding solid electrolyte interface formation on graphite and silicon anodes in lithium-ion batteries: Exploring the role of fluoroethylene carbonate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20solid%20electrolyte%20interface%20formation%20on%20graphite%20and%20silicon%20anodes%20in%20lithium-ion%20batteries:%20Exploring%20the%20role%20of%20fluoroethylene%20carbonate&rft.jtitle=Electrochemistry%20communications&rft.au=Lee,%20Jinhee&rft.date=2024-06&rft.volume=163&rft.spage=107708&rft.pages=107708-&rft.artnum=107708&rft.issn=1388-2481&rft.eissn=1873-1902&rft_id=info:doi/10.1016/j.elecom.2024.107708&rft_dat=%3Celsevier_doaj_%3ES1388248124000511%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-5972edf20f38d48a90d55c065dc18888543c4041e358f622d8cfcb1a0f703343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |