Loading…

Understanding solid electrolyte interface formation on graphite and silicon anodes in lithium-ion batteries: Exploring the role of fluoroethylene carbonate

[Display omitted] •FEC builds SEI layer with Li2CO3 and LiF on electrode, whether graphite or silicon.•The durable SEI layer enhances capacity and effectively reduces volume expansion.•FEC prevents the chemical conversion and reductive decomposition of electrolyte.•FEC inhibits dicarboxylate formati...

Full description

Saved in:
Bibliographic Details
Published in:Electrochemistry communications 2024-06, Vol.163, p.107708, Article 107708
Main Authors: Lee, Jinhee, Jeong, Ji-Yoon, Ha, Jaeyun, Kim, Yong-Tae, Choi, Jinsub
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c367t-5972edf20f38d48a90d55c065dc18888543c4041e358f622d8cfcb1a0f703343
container_end_page
container_issue
container_start_page 107708
container_title Electrochemistry communications
container_volume 163
creator Lee, Jinhee
Jeong, Ji-Yoon
Ha, Jaeyun
Kim, Yong-Tae
Choi, Jinsub
description [Display omitted] •FEC builds SEI layer with Li2CO3 and LiF on electrode, whether graphite or silicon.•The durable SEI layer enhances capacity and effectively reduces volume expansion.•FEC prevents the chemical conversion and reductive decomposition of electrolyte.•FEC inhibits dicarboxylate formation, thereby preserving electrolyte performance. This study explores how fluoroethylene carbonate (FEC) influences the solid electrolyte interface (SEI) layer formation during battery cycling process. FEC improves SEI properties, producing a uniform, chemically stable layer enriched with lithium fluoride. This enhances mechanical resilience and electrochemical stability. FEC also suppresses electrolyte deformation and decomposition, maintaining its initial state. The findings highlight the significance and comprehension of electrolyte additives, offering an electrolyte research pathway for improving Li-ion battery performance and durability.
doi_str_mv 10.1016/j.elecom.2024.107708
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b8178aff2bfd42eb923b433176851403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1388248124000511</els_id><doaj_id>oai_doaj_org_article_b8178aff2bfd42eb923b433176851403</doaj_id><sourcerecordid>S1388248124000511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-5972edf20f38d48a90d55c065dc18888543c4041e358f622d8cfcb1a0f703343</originalsourceid><addsrcrecordid>eNp9kd9qHCEUxqW00HTTN-iFLzBb_82M04tCCWkSCOQmuRZHj7suri5qSvdZ-rJ1MiGXkQPKp9_vePgQ-kbJlhI6fD9sIYBJxy0jTDRpHIn8gC6oHHlHJ8I-tjOXsmNC0s_oSykHQiibJn6B_j1FC7lUHa2PO1xS8BYvtJpTOFfAPlbIThvALuWjrj5F3GqX9Wnv230z4uKDN03UMVkozYKDr3v_fOyW17OuDeGh_MDXf08h5aVR3QNuHQAnh114TjlB3Z8DRMBG5zlFXeESfXI6FPj6um_Q4-_rx6vb7v7h5u7q131n-DDWrp9GBtYx4ri0QuqJ2L43ZOitobKtXnAjiKDAe-kGxqw0zsxUEzcSzgXfoLsVa5M-qFP2R53PKmmvXoSUd0rn6k0ANUs6Su0cm50VDOaJ8VlwTsdB9lQ02gaJlWVyKiWDe-NRopas1EGtWaklK7Vm1Ww_Vxu0Mf94yKoYD9GA9blF0T7i3wf8B31bonc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding solid electrolyte interface formation on graphite and silicon anodes in lithium-ion batteries: Exploring the role of fluoroethylene carbonate</title><source>ScienceDirect Journals</source><creator>Lee, Jinhee ; Jeong, Ji-Yoon ; Ha, Jaeyun ; Kim, Yong-Tae ; Choi, Jinsub</creator><creatorcontrib>Lee, Jinhee ; Jeong, Ji-Yoon ; Ha, Jaeyun ; Kim, Yong-Tae ; Choi, Jinsub</creatorcontrib><description>[Display omitted] •FEC builds SEI layer with Li2CO3 and LiF on electrode, whether graphite or silicon.•The durable SEI layer enhances capacity and effectively reduces volume expansion.•FEC prevents the chemical conversion and reductive decomposition of electrolyte.•FEC inhibits dicarboxylate formation, thereby preserving electrolyte performance. This study explores how fluoroethylene carbonate (FEC) influences the solid electrolyte interface (SEI) layer formation during battery cycling process. FEC improves SEI properties, producing a uniform, chemically stable layer enriched with lithium fluoride. This enhances mechanical resilience and electrochemical stability. FEC also suppresses electrolyte deformation and decomposition, maintaining its initial state. The findings highlight the significance and comprehension of electrolyte additives, offering an electrolyte research pathway for improving Li-ion battery performance and durability.</description><identifier>ISSN: 1388-2481</identifier><identifier>EISSN: 1873-1902</identifier><identifier>DOI: 10.1016/j.elecom.2024.107708</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Dicarboxylate ; Electrolyte decomposition ; Fluoroethylene carbonate ; Lithium-ion battery ; Solid electrolyte interface layer</subject><ispartof>Electrochemistry communications, 2024-06, Vol.163, p.107708, Article 107708</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c367t-5972edf20f38d48a90d55c065dc18888543c4041e358f622d8cfcb1a0f703343</cites><orcidid>0000-0001-9895-6104 ; 0000-0002-7569-5316 ; 0000-0002-9395-1205 ; 0000-0003-1675-7318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Jinhee</creatorcontrib><creatorcontrib>Jeong, Ji-Yoon</creatorcontrib><creatorcontrib>Ha, Jaeyun</creatorcontrib><creatorcontrib>Kim, Yong-Tae</creatorcontrib><creatorcontrib>Choi, Jinsub</creatorcontrib><title>Understanding solid electrolyte interface formation on graphite and silicon anodes in lithium-ion batteries: Exploring the role of fluoroethylene carbonate</title><title>Electrochemistry communications</title><description>[Display omitted] •FEC builds SEI layer with Li2CO3 and LiF on electrode, whether graphite or silicon.•The durable SEI layer enhances capacity and effectively reduces volume expansion.•FEC prevents the chemical conversion and reductive decomposition of electrolyte.•FEC inhibits dicarboxylate formation, thereby preserving electrolyte performance. This study explores how fluoroethylene carbonate (FEC) influences the solid electrolyte interface (SEI) layer formation during battery cycling process. FEC improves SEI properties, producing a uniform, chemically stable layer enriched with lithium fluoride. This enhances mechanical resilience and electrochemical stability. FEC also suppresses electrolyte deformation and decomposition, maintaining its initial state. The findings highlight the significance and comprehension of electrolyte additives, offering an electrolyte research pathway for improving Li-ion battery performance and durability.</description><subject>Dicarboxylate</subject><subject>Electrolyte decomposition</subject><subject>Fluoroethylene carbonate</subject><subject>Lithium-ion battery</subject><subject>Solid electrolyte interface layer</subject><issn>1388-2481</issn><issn>1873-1902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kd9qHCEUxqW00HTTN-iFLzBb_82M04tCCWkSCOQmuRZHj7suri5qSvdZ-rJ1MiGXkQPKp9_vePgQ-kbJlhI6fD9sIYBJxy0jTDRpHIn8gC6oHHlHJ8I-tjOXsmNC0s_oSykHQiibJn6B_j1FC7lUHa2PO1xS8BYvtJpTOFfAPlbIThvALuWjrj5F3GqX9Wnv230z4uKDN03UMVkozYKDr3v_fOyW17OuDeGh_MDXf08h5aVR3QNuHQAnh114TjlB3Z8DRMBG5zlFXeESfXI6FPj6um_Q4-_rx6vb7v7h5u7q131n-DDWrp9GBtYx4ri0QuqJ2L43ZOitobKtXnAjiKDAe-kGxqw0zsxUEzcSzgXfoLsVa5M-qFP2R53PKmmvXoSUd0rn6k0ANUs6Su0cm50VDOaJ8VlwTsdB9lQ02gaJlWVyKiWDe-NRopas1EGtWaklK7Vm1Ww_Vxu0Mf94yKoYD9GA9blF0T7i3wf8B31bonc</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Lee, Jinhee</creator><creator>Jeong, Ji-Yoon</creator><creator>Ha, Jaeyun</creator><creator>Kim, Yong-Tae</creator><creator>Choi, Jinsub</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9895-6104</orcidid><orcidid>https://orcid.org/0000-0002-7569-5316</orcidid><orcidid>https://orcid.org/0000-0002-9395-1205</orcidid><orcidid>https://orcid.org/0000-0003-1675-7318</orcidid></search><sort><creationdate>202406</creationdate><title>Understanding solid electrolyte interface formation on graphite and silicon anodes in lithium-ion batteries: Exploring the role of fluoroethylene carbonate</title><author>Lee, Jinhee ; Jeong, Ji-Yoon ; Ha, Jaeyun ; Kim, Yong-Tae ; Choi, Jinsub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-5972edf20f38d48a90d55c065dc18888543c4041e358f622d8cfcb1a0f703343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dicarboxylate</topic><topic>Electrolyte decomposition</topic><topic>Fluoroethylene carbonate</topic><topic>Lithium-ion battery</topic><topic>Solid electrolyte interface layer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jinhee</creatorcontrib><creatorcontrib>Jeong, Ji-Yoon</creatorcontrib><creatorcontrib>Ha, Jaeyun</creatorcontrib><creatorcontrib>Kim, Yong-Tae</creatorcontrib><creatorcontrib>Choi, Jinsub</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Electrochemistry communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jinhee</au><au>Jeong, Ji-Yoon</au><au>Ha, Jaeyun</au><au>Kim, Yong-Tae</au><au>Choi, Jinsub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding solid electrolyte interface formation on graphite and silicon anodes in lithium-ion batteries: Exploring the role of fluoroethylene carbonate</atitle><jtitle>Electrochemistry communications</jtitle><date>2024-06</date><risdate>2024</risdate><volume>163</volume><spage>107708</spage><pages>107708-</pages><artnum>107708</artnum><issn>1388-2481</issn><eissn>1873-1902</eissn><abstract>[Display omitted] •FEC builds SEI layer with Li2CO3 and LiF on electrode, whether graphite or silicon.•The durable SEI layer enhances capacity and effectively reduces volume expansion.•FEC prevents the chemical conversion and reductive decomposition of electrolyte.•FEC inhibits dicarboxylate formation, thereby preserving electrolyte performance. This study explores how fluoroethylene carbonate (FEC) influences the solid electrolyte interface (SEI) layer formation during battery cycling process. FEC improves SEI properties, producing a uniform, chemically stable layer enriched with lithium fluoride. This enhances mechanical resilience and electrochemical stability. FEC also suppresses electrolyte deformation and decomposition, maintaining its initial state. The findings highlight the significance and comprehension of electrolyte additives, offering an electrolyte research pathway for improving Li-ion battery performance and durability.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.elecom.2024.107708</doi><orcidid>https://orcid.org/0000-0001-9895-6104</orcidid><orcidid>https://orcid.org/0000-0002-7569-5316</orcidid><orcidid>https://orcid.org/0000-0002-9395-1205</orcidid><orcidid>https://orcid.org/0000-0003-1675-7318</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-2481
ispartof Electrochemistry communications, 2024-06, Vol.163, p.107708, Article 107708
issn 1388-2481
1873-1902
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b8178aff2bfd42eb923b433176851403
source ScienceDirect Journals
subjects Dicarboxylate
Electrolyte decomposition
Fluoroethylene carbonate
Lithium-ion battery
Solid electrolyte interface layer
title Understanding solid electrolyte interface formation on graphite and silicon anodes in lithium-ion batteries: Exploring the role of fluoroethylene carbonate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20solid%20electrolyte%20interface%20formation%20on%20graphite%20and%20silicon%20anodes%20in%20lithium-ion%20batteries:%20Exploring%20the%20role%20of%20fluoroethylene%20carbonate&rft.jtitle=Electrochemistry%20communications&rft.au=Lee,%20Jinhee&rft.date=2024-06&rft.volume=163&rft.spage=107708&rft.pages=107708-&rft.artnum=107708&rft.issn=1388-2481&rft.eissn=1873-1902&rft_id=info:doi/10.1016/j.elecom.2024.107708&rft_dat=%3Celsevier_doaj_%3ES1388248124000511%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-5972edf20f38d48a90d55c065dc18888543c4041e358f622d8cfcb1a0f703343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true