Loading…
Theoretical calculations of nonlinear optical calculations of 2D materials
One important feature of two dimensional (2D) materials is that they possess an exceptional nonlinear optical (NLO) response to light, with conduc¬tivities that are several orders of magnitude larger than their 3D counterparts. The theoretical descriptions of these NLO responses in crystalline syste...
Saved in:
Published in: | EPJ Web of Conferences 2020, Vol.233, p.3001 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1851-28fae47881dd3512eddb1dba8ec86d094177c3f63a12f7959ce37a8981b250d03 |
container_end_page | |
container_issue | |
container_start_page | 3001 |
container_title | EPJ Web of Conferences |
container_volume | 233 |
creator | Ventura, G.B. Passos, D.J. Viana Parente Lopes, J.M. Lopes dos Santos, J.M.B. |
description | One important feature of two dimensional (2D) materials is that they possess an exceptional nonlinear optical (NLO) response to light, with conduc¬tivities that are several orders of magnitude larger than their 3D counterparts. The theoretical descriptions of these NLO responses in crystalline systems in¬volve two different representations of the perturbation: the length and velocity gauges. The former has been the formalism of choice for the past two decades; the latter was implemented only recently, due to concerns that it could not be pratically implemented without breaking sum rules – a set of identities that en¬sure the equivalence between the two formalisms – which would then render the results unphysical. In this work, we shall review and summarize our contri¬butions to the study of the two formalisms and of their relationship by means of the aforementioned sum rules. |
doi_str_mv | 10.1051/epjconf/202023303001 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b817d3bbe55346bebf337fbbb3834275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b817d3bbe55346bebf337fbbb3834275</doaj_id><sourcerecordid>2488154881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1851-28fae47881dd3512eddb1dba8ec86d094177c3f63a12f7959ce37a8981b250d03</originalsourceid><addsrcrecordid>eNptUU1LAzEQDaJgqf0HHhY8r81kNpvsUepXpeClgreQbBLdZbup2e3Bf29qi_TgDPPB8Hjz4BFyDfQWKIe527Z16P2c0ZSIFCmFMzJhQGlOoXg_P9kvyWwYWpoCqwp5OSEv608XohubWndZqnrX6bEJ_ZAFn_Wh75re6ZiF7f8Idp9t9Ohio7vhilz4NNzsOKfk7fFhvXjOV69Py8XdKq9BcsiZ9NoVQkqwFjkwZ60Ba7R0tSwtrQoQokZfogbmRcWr2qHQspJgGKeW4pQsD7w26FZtY7PR8VsF3ajfQ4gfSsckt3PKSBAWjXGcY1EaZzyi8MYYlFgwwRPXzYFrG8PXzg2jasMu9km-YkWSyPctoYoDqo5hGKLzf1-Bqr0J6miCOjUBfwAKYHts</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488154881</pqid></control><display><type>article</type><title>Theoretical calculations of nonlinear optical calculations of 2D materials</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Ventura, G.B. ; Passos, D.J. ; Viana Parente Lopes, J.M. ; Lopes dos Santos, J.M.B.</creator><contributor>Agostinho Moreira, J. ; Almeida, B.G.</contributor><creatorcontrib>Ventura, G.B. ; Passos, D.J. ; Viana Parente Lopes, J.M. ; Lopes dos Santos, J.M.B. ; Agostinho Moreira, J. ; Almeida, B.G.</creatorcontrib><description>One important feature of two dimensional (2D) materials is that they possess an exceptional nonlinear optical (NLO) response to light, with conduc¬tivities that are several orders of magnitude larger than their 3D counterparts. The theoretical descriptions of these NLO responses in crystalline systems in¬volve two different representations of the perturbation: the length and velocity gauges. The former has been the formalism of choice for the past two decades; the latter was implemented only recently, due to concerns that it could not be pratically implemented without breaking sum rules – a set of identities that en¬sure the equivalence between the two formalisms – which would then render the results unphysical. In this work, we shall review and summarize our contri¬butions to the study of the two formalisms and of their relationship by means of the aforementioned sum rules.</description><identifier>ISSN: 2100-014X</identifier><identifier>ISSN: 2101-6275</identifier><identifier>EISSN: 2100-014X</identifier><identifier>DOI: 10.1051/epjconf/202023303001</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Formalism ; Gauges ; Mathematical analysis ; Nonlinear optics ; Perturbation ; Sum rules ; Two dimensional materials</subject><ispartof>EPJ Web of Conferences, 2020, Vol.233, p.3001</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1851-28fae47881dd3512eddb1dba8ec86d094177c3f63a12f7959ce37a8981b250d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2488154881?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4024,23930,23931,25140,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Agostinho Moreira, J.</contributor><contributor>Almeida, B.G.</contributor><creatorcontrib>Ventura, G.B.</creatorcontrib><creatorcontrib>Passos, D.J.</creatorcontrib><creatorcontrib>Viana Parente Lopes, J.M.</creatorcontrib><creatorcontrib>Lopes dos Santos, J.M.B.</creatorcontrib><title>Theoretical calculations of nonlinear optical calculations of 2D materials</title><title>EPJ Web of Conferences</title><description>One important feature of two dimensional (2D) materials is that they possess an exceptional nonlinear optical (NLO) response to light, with conduc¬tivities that are several orders of magnitude larger than their 3D counterparts. The theoretical descriptions of these NLO responses in crystalline systems in¬volve two different representations of the perturbation: the length and velocity gauges. The former has been the formalism of choice for the past two decades; the latter was implemented only recently, due to concerns that it could not be pratically implemented without breaking sum rules – a set of identities that en¬sure the equivalence between the two formalisms – which would then render the results unphysical. In this work, we shall review and summarize our contri¬butions to the study of the two formalisms and of their relationship by means of the aforementioned sum rules.</description><subject>Formalism</subject><subject>Gauges</subject><subject>Mathematical analysis</subject><subject>Nonlinear optics</subject><subject>Perturbation</subject><subject>Sum rules</subject><subject>Two dimensional materials</subject><issn>2100-014X</issn><issn>2101-6275</issn><issn>2100-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1LAzEQDaJgqf0HHhY8r81kNpvsUepXpeClgreQbBLdZbup2e3Bf29qi_TgDPPB8Hjz4BFyDfQWKIe527Z16P2c0ZSIFCmFMzJhQGlOoXg_P9kvyWwYWpoCqwp5OSEv608XohubWndZqnrX6bEJ_ZAFn_Wh75re6ZiF7f8Idp9t9Ohio7vhilz4NNzsOKfk7fFhvXjOV69Py8XdKq9BcsiZ9NoVQkqwFjkwZ60Ba7R0tSwtrQoQokZfogbmRcWr2qHQspJgGKeW4pQsD7w26FZtY7PR8VsF3ajfQ4gfSsckt3PKSBAWjXGcY1EaZzyi8MYYlFgwwRPXzYFrG8PXzg2jasMu9km-YkWSyPctoYoDqo5hGKLzf1-Bqr0J6miCOjUBfwAKYHts</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ventura, G.B.</creator><creator>Passos, D.J.</creator><creator>Viana Parente Lopes, J.M.</creator><creator>Lopes dos Santos, J.M.B.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Theoretical calculations of nonlinear optical calculations of 2D materials</title><author>Ventura, G.B. ; Passos, D.J. ; Viana Parente Lopes, J.M. ; Lopes dos Santos, J.M.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1851-28fae47881dd3512eddb1dba8ec86d094177c3f63a12f7959ce37a8981b250d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Formalism</topic><topic>Gauges</topic><topic>Mathematical analysis</topic><topic>Nonlinear optics</topic><topic>Perturbation</topic><topic>Sum rules</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ventura, G.B.</creatorcontrib><creatorcontrib>Passos, D.J.</creatorcontrib><creatorcontrib>Viana Parente Lopes, J.M.</creatorcontrib><creatorcontrib>Lopes dos Santos, J.M.B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>EPJ Web of Conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ventura, G.B.</au><au>Passos, D.J.</au><au>Viana Parente Lopes, J.M.</au><au>Lopes dos Santos, J.M.B.</au><au>Agostinho Moreira, J.</au><au>Almeida, B.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical calculations of nonlinear optical calculations of 2D materials</atitle><jtitle>EPJ Web of Conferences</jtitle><date>2020</date><risdate>2020</risdate><volume>233</volume><spage>3001</spage><pages>3001-</pages><issn>2100-014X</issn><issn>2101-6275</issn><eissn>2100-014X</eissn><abstract>One important feature of two dimensional (2D) materials is that they possess an exceptional nonlinear optical (NLO) response to light, with conduc¬tivities that are several orders of magnitude larger than their 3D counterparts. The theoretical descriptions of these NLO responses in crystalline systems in¬volve two different representations of the perturbation: the length and velocity gauges. The former has been the formalism of choice for the past two decades; the latter was implemented only recently, due to concerns that it could not be pratically implemented without breaking sum rules – a set of identities that en¬sure the equivalence between the two formalisms – which would then render the results unphysical. In this work, we shall review and summarize our contri¬butions to the study of the two formalisms and of their relationship by means of the aforementioned sum rules.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/epjconf/202023303001</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2100-014X |
ispartof | EPJ Web of Conferences, 2020, Vol.233, p.3001 |
issn | 2100-014X 2101-6275 2100-014X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b817d3bbe55346bebf337fbbb3834275 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Formalism Gauges Mathematical analysis Nonlinear optics Perturbation Sum rules Two dimensional materials |
title | Theoretical calculations of nonlinear optical calculations of 2D materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20calculations%20of%20nonlinear%20optical%20calculations%20of%202D%20materials&rft.jtitle=EPJ%20Web%20of%20Conferences&rft.au=Ventura,%20G.B.&rft.date=2020&rft.volume=233&rft.spage=3001&rft.pages=3001-&rft.issn=2100-014X&rft.eissn=2100-014X&rft_id=info:doi/10.1051/epjconf/202023303001&rft_dat=%3Cproquest_doaj_%3E2488154881%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1851-28fae47881dd3512eddb1dba8ec86d094177c3f63a12f7959ce37a8981b250d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488154881&rft_id=info:pmid/&rfr_iscdi=true |