Loading…
Low Thermal Expansion Machine Frame Designs Using Lattice Structures
In this work, we investigated tessellating cellular (or lattice) structures for use in a low thermal expansion machine frame. We proposed a concept for a lattice structure with tailorable effective coefficient of thermal expansion (CTE). The design is an assembly of two parts: a lattice outer part a...
Saved in:
Published in: | Applied sciences 2021-10, Vol.11 (19), p.9135 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we investigated tessellating cellular (or lattice) structures for use in a low thermal expansion machine frame. We proposed a concept for a lattice structure with tailorable effective coefficient of thermal expansion (CTE). The design is an assembly of two parts: a lattice outer part and a cylindrical inner part, which are made of homogenous materials with different positive CTEs. Several lattice design variations were investigated and their thermal and mechanical performance analysed using a finite element method. Our numerical models showed that a lattice design using Nylon 12 and ultra-high molecular weight polyethylene could yield an effective in-plane CTE of 1 × 10−9 K−1 (cf. 109 × 10−6 K−1 for solid Nylon 12). This paper showed that the combination of design optimisation and additive manufacturing can be used to achieve low CTE structures and, therefore, low thermal expansion machine frames of a few tens of centimetres in height. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11199135 |