Loading…
Photogrammetric UAV Mapping of Terrain under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification and Terrain Correction
Photogrammetric UAV sees a surge in use for high-resolution mapping, but its use to map terrain under dense vegetation cover remains challenging due to a lack of exposed ground surfaces. This paper presents a novel object-oriented classification ensemble algorithm to leverage height, texture and con...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2017-11, Vol.9 (11), p.1187 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3 |
container_end_page | |
container_issue | 11 |
container_start_page | 1187 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 9 |
creator | Meng, Xuelian Shang, Nan Zhang, Xukai Li, Chunyan Zhao, Kaiguang Qiu, Xiaomin Weeks, Eddie |
description | Photogrammetric UAV sees a surge in use for high-resolution mapping, but its use to map terrain under dense vegetation cover remains challenging due to a lack of exposed ground surfaces. This paper presents a novel object-oriented classification ensemble algorithm to leverage height, texture and contextual information of UAV data to improve landscape classification and terrain estimation. Its implementation incorporates multiple heuristics, such as multi-input machine learning-based classification, object-oriented ensemble, and integration of UAV and GPS surveys for terrain correction. Experiments based on a densely vegetated wetland restoration site showed classification improvement from 83.98% to 96.12% in overall accuracy and from 0.7806 to 0.947 in kappa value. Use of standard and existing UAV terrain mapping algorithms and software produced reliable digital terrain model only over exposed bare grounds (mean error = −0.019 m and RMSE = 0.035 m) but severely overestimated the terrain by ~80% of mean vegetation height in vegetated areas. The terrain correction method successfully reduced the mean error from 0.302 m to −0.002 m (RMSE from 0.342 m to 0.177 m) in low vegetation and from 1.305 m to 0.057 m (RMSE from 1.399 m to 0.550 m) in tall vegetation. Overall, this research validated a feasible solution to integrate UAV and RTK GPS for terrain mapping in densely vegetated environments. |
doi_str_mv | 10.3390/rs9111187 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b834ed266a1a44818b071922ace32c9c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b834ed266a1a44818b071922ace32c9c</doaj_id><sourcerecordid>1977827764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3</originalsourceid><addsrcrecordid>eNpdUU1v1DAQjSoqUZUe-AeWeuIQ8FcSh9sqFKhUtD20vVqOPU69SuJl7D30B_E_MV20Qsxlnt68eTPSq6r3jH4UoqefMPWslOrOqgtOO15L3vM3_-C31VVKO1pKCNZTeVH9un-OOU5olgUyBkseN0_kh9nvwzqR6MkDIJqwksPqAMkXWBOQIZqUzUyeYIJscojrZ7JZyXbcgc31FgOsGRwZZpNS8MG-SshNWV3GGchmniKG_LwQH_F_lVnd6eYQEYtjod9V597MCa7-9svq8evNw_C9vtt-ux02d7WVrcw1t64fXSuoospR2XjFbNMw5pW1TDWtZ43gXjRSSuGYZG0BzBpouzJ03ovL6vbo66LZ6T2GxeCLjiboVyLipA3mYGfQoxISHG9bw4yUiqmRdqzn3FgQ3Pa2eF0fvfYYfx4gZb2LB1zL-5r1Xad417WyqD4cVRZjSgj-dJVR_SdUfQpV_AaeSpUL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977827764</pqid></control><display><type>article</type><title>Photogrammetric UAV Mapping of Terrain under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification and Terrain Correction</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Meng, Xuelian ; Shang, Nan ; Zhang, Xukai ; Li, Chunyan ; Zhao, Kaiguang ; Qiu, Xiaomin ; Weeks, Eddie</creator><creatorcontrib>Meng, Xuelian ; Shang, Nan ; Zhang, Xukai ; Li, Chunyan ; Zhao, Kaiguang ; Qiu, Xiaomin ; Weeks, Eddie</creatorcontrib><description>Photogrammetric UAV sees a surge in use for high-resolution mapping, but its use to map terrain under dense vegetation cover remains challenging due to a lack of exposed ground surfaces. This paper presents a novel object-oriented classification ensemble algorithm to leverage height, texture and contextual information of UAV data to improve landscape classification and terrain estimation. Its implementation incorporates multiple heuristics, such as multi-input machine learning-based classification, object-oriented ensemble, and integration of UAV and GPS surveys for terrain correction. Experiments based on a densely vegetated wetland restoration site showed classification improvement from 83.98% to 96.12% in overall accuracy and from 0.7806 to 0.947 in kappa value. Use of standard and existing UAV terrain mapping algorithms and software produced reliable digital terrain model only over exposed bare grounds (mean error = −0.019 m and RMSE = 0.035 m) but severely overestimated the terrain by ~80% of mean vegetation height in vegetated areas. The terrain correction method successfully reduced the mean error from 0.302 m to −0.002 m (RMSE from 0.342 m to 0.177 m) in low vegetation and from 1.305 m to 0.057 m (RMSE from 1.399 m to 0.550 m) in tall vegetation. Overall, this research validated a feasible solution to integrate UAV and RTK GPS for terrain mapping in densely vegetated environments.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs9111187</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerial surveys ; Algorithms ; Classification ; classification correction ; classification ensemble ; coastal topographic mapping ; Environmental restoration ; Error correction ; high resolution ; Learning algorithms ; Machine learning ; Mapping ; Object oriented programming ; object-oriented analysis ; photogrammetric UAV ; Photogrammetry ; Problem solving ; Restoration ; terrain correction ; Terrain mapping ; Vegetation ; Vegetation cover ; wetland restoration</subject><ispartof>Remote sensing (Basel, Switzerland), 2017-11, Vol.9 (11), p.1187</ispartof><rights>Copyright MDPI AG 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3</citedby><cites>FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3</cites><orcidid>0000-0001-6953-1916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1977827764/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1977827764?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Meng, Xuelian</creatorcontrib><creatorcontrib>Shang, Nan</creatorcontrib><creatorcontrib>Zhang, Xukai</creatorcontrib><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Zhao, Kaiguang</creatorcontrib><creatorcontrib>Qiu, Xiaomin</creatorcontrib><creatorcontrib>Weeks, Eddie</creatorcontrib><title>Photogrammetric UAV Mapping of Terrain under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification and Terrain Correction</title><title>Remote sensing (Basel, Switzerland)</title><description>Photogrammetric UAV sees a surge in use for high-resolution mapping, but its use to map terrain under dense vegetation cover remains challenging due to a lack of exposed ground surfaces. This paper presents a novel object-oriented classification ensemble algorithm to leverage height, texture and contextual information of UAV data to improve landscape classification and terrain estimation. Its implementation incorporates multiple heuristics, such as multi-input machine learning-based classification, object-oriented ensemble, and integration of UAV and GPS surveys for terrain correction. Experiments based on a densely vegetated wetland restoration site showed classification improvement from 83.98% to 96.12% in overall accuracy and from 0.7806 to 0.947 in kappa value. Use of standard and existing UAV terrain mapping algorithms and software produced reliable digital terrain model only over exposed bare grounds (mean error = −0.019 m and RMSE = 0.035 m) but severely overestimated the terrain by ~80% of mean vegetation height in vegetated areas. The terrain correction method successfully reduced the mean error from 0.302 m to −0.002 m (RMSE from 0.342 m to 0.177 m) in low vegetation and from 1.305 m to 0.057 m (RMSE from 1.399 m to 0.550 m) in tall vegetation. Overall, this research validated a feasible solution to integrate UAV and RTK GPS for terrain mapping in densely vegetated environments.</description><subject>Aerial surveys</subject><subject>Algorithms</subject><subject>Classification</subject><subject>classification correction</subject><subject>classification ensemble</subject><subject>coastal topographic mapping</subject><subject>Environmental restoration</subject><subject>Error correction</subject><subject>high resolution</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Object oriented programming</subject><subject>object-oriented analysis</subject><subject>photogrammetric UAV</subject><subject>Photogrammetry</subject><subject>Problem solving</subject><subject>Restoration</subject><subject>terrain correction</subject><subject>Terrain mapping</subject><subject>Vegetation</subject><subject>Vegetation cover</subject><subject>wetland restoration</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUU1v1DAQjSoqUZUe-AeWeuIQ8FcSh9sqFKhUtD20vVqOPU69SuJl7D30B_E_MV20Qsxlnt68eTPSq6r3jH4UoqefMPWslOrOqgtOO15L3vM3_-C31VVKO1pKCNZTeVH9un-OOU5olgUyBkseN0_kh9nvwzqR6MkDIJqwksPqAMkXWBOQIZqUzUyeYIJscojrZ7JZyXbcgc31FgOsGRwZZpNS8MG-SshNWV3GGchmniKG_LwQH_F_lVnd6eYQEYtjod9V597MCa7-9svq8evNw_C9vtt-ux02d7WVrcw1t64fXSuoospR2XjFbNMw5pW1TDWtZ43gXjRSSuGYZG0BzBpouzJ03ovL6vbo66LZ6T2GxeCLjiboVyLipA3mYGfQoxISHG9bw4yUiqmRdqzn3FgQ3Pa2eF0fvfYYfx4gZb2LB1zL-5r1Xad417WyqD4cVRZjSgj-dJVR_SdUfQpV_AaeSpUL</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Meng, Xuelian</creator><creator>Shang, Nan</creator><creator>Zhang, Xukai</creator><creator>Li, Chunyan</creator><creator>Zhao, Kaiguang</creator><creator>Qiu, Xiaomin</creator><creator>Weeks, Eddie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6953-1916</orcidid></search><sort><creationdate>20171101</creationdate><title>Photogrammetric UAV Mapping of Terrain under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification and Terrain Correction</title><author>Meng, Xuelian ; Shang, Nan ; Zhang, Xukai ; Li, Chunyan ; Zhao, Kaiguang ; Qiu, Xiaomin ; Weeks, Eddie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerial surveys</topic><topic>Algorithms</topic><topic>Classification</topic><topic>classification correction</topic><topic>classification ensemble</topic><topic>coastal topographic mapping</topic><topic>Environmental restoration</topic><topic>Error correction</topic><topic>high resolution</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Object oriented programming</topic><topic>object-oriented analysis</topic><topic>photogrammetric UAV</topic><topic>Photogrammetry</topic><topic>Problem solving</topic><topic>Restoration</topic><topic>terrain correction</topic><topic>Terrain mapping</topic><topic>Vegetation</topic><topic>Vegetation cover</topic><topic>wetland restoration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Xuelian</creatorcontrib><creatorcontrib>Shang, Nan</creatorcontrib><creatorcontrib>Zhang, Xukai</creatorcontrib><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Zhao, Kaiguang</creatorcontrib><creatorcontrib>Qiu, Xiaomin</creatorcontrib><creatorcontrib>Weeks, Eddie</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Xuelian</au><au>Shang, Nan</au><au>Zhang, Xukai</au><au>Li, Chunyan</au><au>Zhao, Kaiguang</au><au>Qiu, Xiaomin</au><au>Weeks, Eddie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photogrammetric UAV Mapping of Terrain under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification and Terrain Correction</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>9</volume><issue>11</issue><spage>1187</spage><pages>1187-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Photogrammetric UAV sees a surge in use for high-resolution mapping, but its use to map terrain under dense vegetation cover remains challenging due to a lack of exposed ground surfaces. This paper presents a novel object-oriented classification ensemble algorithm to leverage height, texture and contextual information of UAV data to improve landscape classification and terrain estimation. Its implementation incorporates multiple heuristics, such as multi-input machine learning-based classification, object-oriented ensemble, and integration of UAV and GPS surveys for terrain correction. Experiments based on a densely vegetated wetland restoration site showed classification improvement from 83.98% to 96.12% in overall accuracy and from 0.7806 to 0.947 in kappa value. Use of standard and existing UAV terrain mapping algorithms and software produced reliable digital terrain model only over exposed bare grounds (mean error = −0.019 m and RMSE = 0.035 m) but severely overestimated the terrain by ~80% of mean vegetation height in vegetated areas. The terrain correction method successfully reduced the mean error from 0.302 m to −0.002 m (RMSE from 0.342 m to 0.177 m) in low vegetation and from 1.305 m to 0.057 m (RMSE from 1.399 m to 0.550 m) in tall vegetation. Overall, this research validated a feasible solution to integrate UAV and RTK GPS for terrain mapping in densely vegetated environments.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs9111187</doi><orcidid>https://orcid.org/0000-0001-6953-1916</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2017-11, Vol.9 (11), p.1187 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b834ed266a1a44818b071922ace32c9c |
source | Publicly Available Content Database; IngentaConnect Journals |
subjects | Aerial surveys Algorithms Classification classification correction classification ensemble coastal topographic mapping Environmental restoration Error correction high resolution Learning algorithms Machine learning Mapping Object oriented programming object-oriented analysis photogrammetric UAV Photogrammetry Problem solving Restoration terrain correction Terrain mapping Vegetation Vegetation cover wetland restoration |
title | Photogrammetric UAV Mapping of Terrain under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification and Terrain Correction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photogrammetric%20UAV%20Mapping%20of%20Terrain%20under%20Dense%20Coastal%20Vegetation:%20An%20Object-Oriented%20Classification%20Ensemble%20Algorithm%20for%20Classification%20and%20Terrain%20Correction&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Meng,%20Xuelian&rft.date=2017-11-01&rft.volume=9&rft.issue=11&rft.spage=1187&rft.pages=1187-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs9111187&rft_dat=%3Cproquest_doaj_%3E1977827764%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1977827764&rft_id=info:pmid/&rfr_iscdi=true |