Loading…

Photogrammetric UAV Mapping of Terrain under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification and Terrain Correction

Photogrammetric UAV sees a surge in use for high-resolution mapping, but its use to map terrain under dense vegetation cover remains challenging due to a lack of exposed ground surfaces. This paper presents a novel object-oriented classification ensemble algorithm to leverage height, texture and con...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2017-11, Vol.9 (11), p.1187
Main Authors: Meng, Xuelian, Shang, Nan, Zhang, Xukai, Li, Chunyan, Zhao, Kaiguang, Qiu, Xiaomin, Weeks, Eddie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3
cites cdi_FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3
container_end_page
container_issue 11
container_start_page 1187
container_title Remote sensing (Basel, Switzerland)
container_volume 9
creator Meng, Xuelian
Shang, Nan
Zhang, Xukai
Li, Chunyan
Zhao, Kaiguang
Qiu, Xiaomin
Weeks, Eddie
description Photogrammetric UAV sees a surge in use for high-resolution mapping, but its use to map terrain under dense vegetation cover remains challenging due to a lack of exposed ground surfaces. This paper presents a novel object-oriented classification ensemble algorithm to leverage height, texture and contextual information of UAV data to improve landscape classification and terrain estimation. Its implementation incorporates multiple heuristics, such as multi-input machine learning-based classification, object-oriented ensemble, and integration of UAV and GPS surveys for terrain correction. Experiments based on a densely vegetated wetland restoration site showed classification improvement from 83.98% to 96.12% in overall accuracy and from 0.7806 to 0.947 in kappa value. Use of standard and existing UAV terrain mapping algorithms and software produced reliable digital terrain model only over exposed bare grounds (mean error = −0.019 m and RMSE = 0.035 m) but severely overestimated the terrain by ~80% of mean vegetation height in vegetated areas. The terrain correction method successfully reduced the mean error from 0.302 m to −0.002 m (RMSE from 0.342 m to 0.177 m) in low vegetation and from 1.305 m to 0.057 m (RMSE from 1.399 m to 0.550 m) in tall vegetation. Overall, this research validated a feasible solution to integrate UAV and RTK GPS for terrain mapping in densely vegetated environments.
doi_str_mv 10.3390/rs9111187
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b834ed266a1a44818b071922ace32c9c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b834ed266a1a44818b071922ace32c9c</doaj_id><sourcerecordid>1977827764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3</originalsourceid><addsrcrecordid>eNpdUU1v1DAQjSoqUZUe-AeWeuIQ8FcSh9sqFKhUtD20vVqOPU69SuJl7D30B_E_MV20Qsxlnt68eTPSq6r3jH4UoqefMPWslOrOqgtOO15L3vM3_-C31VVKO1pKCNZTeVH9un-OOU5olgUyBkseN0_kh9nvwzqR6MkDIJqwksPqAMkXWBOQIZqUzUyeYIJscojrZ7JZyXbcgc31FgOsGRwZZpNS8MG-SshNWV3GGchmniKG_LwQH_F_lVnd6eYQEYtjod9V597MCa7-9svq8evNw_C9vtt-ux02d7WVrcw1t64fXSuoospR2XjFbNMw5pW1TDWtZ43gXjRSSuGYZG0BzBpouzJ03ovL6vbo66LZ6T2GxeCLjiboVyLipA3mYGfQoxISHG9bw4yUiqmRdqzn3FgQ3Pa2eF0fvfYYfx4gZb2LB1zL-5r1Xad417WyqD4cVRZjSgj-dJVR_SdUfQpV_AaeSpUL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977827764</pqid></control><display><type>article</type><title>Photogrammetric UAV Mapping of Terrain under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification and Terrain Correction</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Meng, Xuelian ; Shang, Nan ; Zhang, Xukai ; Li, Chunyan ; Zhao, Kaiguang ; Qiu, Xiaomin ; Weeks, Eddie</creator><creatorcontrib>Meng, Xuelian ; Shang, Nan ; Zhang, Xukai ; Li, Chunyan ; Zhao, Kaiguang ; Qiu, Xiaomin ; Weeks, Eddie</creatorcontrib><description>Photogrammetric UAV sees a surge in use for high-resolution mapping, but its use to map terrain under dense vegetation cover remains challenging due to a lack of exposed ground surfaces. This paper presents a novel object-oriented classification ensemble algorithm to leverage height, texture and contextual information of UAV data to improve landscape classification and terrain estimation. Its implementation incorporates multiple heuristics, such as multi-input machine learning-based classification, object-oriented ensemble, and integration of UAV and GPS surveys for terrain correction. Experiments based on a densely vegetated wetland restoration site showed classification improvement from 83.98% to 96.12% in overall accuracy and from 0.7806 to 0.947 in kappa value. Use of standard and existing UAV terrain mapping algorithms and software produced reliable digital terrain model only over exposed bare grounds (mean error = −0.019 m and RMSE = 0.035 m) but severely overestimated the terrain by ~80% of mean vegetation height in vegetated areas. The terrain correction method successfully reduced the mean error from 0.302 m to −0.002 m (RMSE from 0.342 m to 0.177 m) in low vegetation and from 1.305 m to 0.057 m (RMSE from 1.399 m to 0.550 m) in tall vegetation. Overall, this research validated a feasible solution to integrate UAV and RTK GPS for terrain mapping in densely vegetated environments.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs9111187</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerial surveys ; Algorithms ; Classification ; classification correction ; classification ensemble ; coastal topographic mapping ; Environmental restoration ; Error correction ; high resolution ; Learning algorithms ; Machine learning ; Mapping ; Object oriented programming ; object-oriented analysis ; photogrammetric UAV ; Photogrammetry ; Problem solving ; Restoration ; terrain correction ; Terrain mapping ; Vegetation ; Vegetation cover ; wetland restoration</subject><ispartof>Remote sensing (Basel, Switzerland), 2017-11, Vol.9 (11), p.1187</ispartof><rights>Copyright MDPI AG 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3</citedby><cites>FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3</cites><orcidid>0000-0001-6953-1916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1977827764/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1977827764?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Meng, Xuelian</creatorcontrib><creatorcontrib>Shang, Nan</creatorcontrib><creatorcontrib>Zhang, Xukai</creatorcontrib><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Zhao, Kaiguang</creatorcontrib><creatorcontrib>Qiu, Xiaomin</creatorcontrib><creatorcontrib>Weeks, Eddie</creatorcontrib><title>Photogrammetric UAV Mapping of Terrain under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification and Terrain Correction</title><title>Remote sensing (Basel, Switzerland)</title><description>Photogrammetric UAV sees a surge in use for high-resolution mapping, but its use to map terrain under dense vegetation cover remains challenging due to a lack of exposed ground surfaces. This paper presents a novel object-oriented classification ensemble algorithm to leverage height, texture and contextual information of UAV data to improve landscape classification and terrain estimation. Its implementation incorporates multiple heuristics, such as multi-input machine learning-based classification, object-oriented ensemble, and integration of UAV and GPS surveys for terrain correction. Experiments based on a densely vegetated wetland restoration site showed classification improvement from 83.98% to 96.12% in overall accuracy and from 0.7806 to 0.947 in kappa value. Use of standard and existing UAV terrain mapping algorithms and software produced reliable digital terrain model only over exposed bare grounds (mean error = −0.019 m and RMSE = 0.035 m) but severely overestimated the terrain by ~80% of mean vegetation height in vegetated areas. The terrain correction method successfully reduced the mean error from 0.302 m to −0.002 m (RMSE from 0.342 m to 0.177 m) in low vegetation and from 1.305 m to 0.057 m (RMSE from 1.399 m to 0.550 m) in tall vegetation. Overall, this research validated a feasible solution to integrate UAV and RTK GPS for terrain mapping in densely vegetated environments.</description><subject>Aerial surveys</subject><subject>Algorithms</subject><subject>Classification</subject><subject>classification correction</subject><subject>classification ensemble</subject><subject>coastal topographic mapping</subject><subject>Environmental restoration</subject><subject>Error correction</subject><subject>high resolution</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Object oriented programming</subject><subject>object-oriented analysis</subject><subject>photogrammetric UAV</subject><subject>Photogrammetry</subject><subject>Problem solving</subject><subject>Restoration</subject><subject>terrain correction</subject><subject>Terrain mapping</subject><subject>Vegetation</subject><subject>Vegetation cover</subject><subject>wetland restoration</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUU1v1DAQjSoqUZUe-AeWeuIQ8FcSh9sqFKhUtD20vVqOPU69SuJl7D30B_E_MV20Qsxlnt68eTPSq6r3jH4UoqefMPWslOrOqgtOO15L3vM3_-C31VVKO1pKCNZTeVH9un-OOU5olgUyBkseN0_kh9nvwzqR6MkDIJqwksPqAMkXWBOQIZqUzUyeYIJscojrZ7JZyXbcgc31FgOsGRwZZpNS8MG-SshNWV3GGchmniKG_LwQH_F_lVnd6eYQEYtjod9V597MCa7-9svq8evNw_C9vtt-ux02d7WVrcw1t64fXSuoospR2XjFbNMw5pW1TDWtZ43gXjRSSuGYZG0BzBpouzJ03ovL6vbo66LZ6T2GxeCLjiboVyLipA3mYGfQoxISHG9bw4yUiqmRdqzn3FgQ3Pa2eF0fvfYYfx4gZb2LB1zL-5r1Xad417WyqD4cVRZjSgj-dJVR_SdUfQpV_AaeSpUL</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Meng, Xuelian</creator><creator>Shang, Nan</creator><creator>Zhang, Xukai</creator><creator>Li, Chunyan</creator><creator>Zhao, Kaiguang</creator><creator>Qiu, Xiaomin</creator><creator>Weeks, Eddie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6953-1916</orcidid></search><sort><creationdate>20171101</creationdate><title>Photogrammetric UAV Mapping of Terrain under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification and Terrain Correction</title><author>Meng, Xuelian ; Shang, Nan ; Zhang, Xukai ; Li, Chunyan ; Zhao, Kaiguang ; Qiu, Xiaomin ; Weeks, Eddie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerial surveys</topic><topic>Algorithms</topic><topic>Classification</topic><topic>classification correction</topic><topic>classification ensemble</topic><topic>coastal topographic mapping</topic><topic>Environmental restoration</topic><topic>Error correction</topic><topic>high resolution</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Object oriented programming</topic><topic>object-oriented analysis</topic><topic>photogrammetric UAV</topic><topic>Photogrammetry</topic><topic>Problem solving</topic><topic>Restoration</topic><topic>terrain correction</topic><topic>Terrain mapping</topic><topic>Vegetation</topic><topic>Vegetation cover</topic><topic>wetland restoration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Xuelian</creatorcontrib><creatorcontrib>Shang, Nan</creatorcontrib><creatorcontrib>Zhang, Xukai</creatorcontrib><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Zhao, Kaiguang</creatorcontrib><creatorcontrib>Qiu, Xiaomin</creatorcontrib><creatorcontrib>Weeks, Eddie</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Xuelian</au><au>Shang, Nan</au><au>Zhang, Xukai</au><au>Li, Chunyan</au><au>Zhao, Kaiguang</au><au>Qiu, Xiaomin</au><au>Weeks, Eddie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photogrammetric UAV Mapping of Terrain under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification and Terrain Correction</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>9</volume><issue>11</issue><spage>1187</spage><pages>1187-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Photogrammetric UAV sees a surge in use for high-resolution mapping, but its use to map terrain under dense vegetation cover remains challenging due to a lack of exposed ground surfaces. This paper presents a novel object-oriented classification ensemble algorithm to leverage height, texture and contextual information of UAV data to improve landscape classification and terrain estimation. Its implementation incorporates multiple heuristics, such as multi-input machine learning-based classification, object-oriented ensemble, and integration of UAV and GPS surveys for terrain correction. Experiments based on a densely vegetated wetland restoration site showed classification improvement from 83.98% to 96.12% in overall accuracy and from 0.7806 to 0.947 in kappa value. Use of standard and existing UAV terrain mapping algorithms and software produced reliable digital terrain model only over exposed bare grounds (mean error = −0.019 m and RMSE = 0.035 m) but severely overestimated the terrain by ~80% of mean vegetation height in vegetated areas. The terrain correction method successfully reduced the mean error from 0.302 m to −0.002 m (RMSE from 0.342 m to 0.177 m) in low vegetation and from 1.305 m to 0.057 m (RMSE from 1.399 m to 0.550 m) in tall vegetation. Overall, this research validated a feasible solution to integrate UAV and RTK GPS for terrain mapping in densely vegetated environments.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs9111187</doi><orcidid>https://orcid.org/0000-0001-6953-1916</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2017-11, Vol.9 (11), p.1187
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b834ed266a1a44818b071922ace32c9c
source Publicly Available Content Database; IngentaConnect Journals
subjects Aerial surveys
Algorithms
Classification
classification correction
classification ensemble
coastal topographic mapping
Environmental restoration
Error correction
high resolution
Learning algorithms
Machine learning
Mapping
Object oriented programming
object-oriented analysis
photogrammetric UAV
Photogrammetry
Problem solving
Restoration
terrain correction
Terrain mapping
Vegetation
Vegetation cover
wetland restoration
title Photogrammetric UAV Mapping of Terrain under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification and Terrain Correction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photogrammetric%20UAV%20Mapping%20of%20Terrain%20under%20Dense%20Coastal%20Vegetation:%20An%20Object-Oriented%20Classification%20Ensemble%20Algorithm%20for%20Classification%20and%20Terrain%20Correction&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Meng,%20Xuelian&rft.date=2017-11-01&rft.volume=9&rft.issue=11&rft.spage=1187&rft.pages=1187-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs9111187&rft_dat=%3Cproquest_doaj_%3E1977827764%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-2cd9bd630808d045f81c5511f8cc1856f1532f354443d14164441cae67856dff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1977827764&rft_id=info:pmid/&rfr_iscdi=true