Loading…

Low-Velocity Impact Induced Damage Evaluation and Its Influence on the Residual Flexural Behavior of Glass/Epoxy Laminates Hybridized with Glass Fillers

This research work investigates the low-velocity impact induced damage behavior and its influence on the residual flexural response of glass/epoxy composites improved with milled glass fillers. The low-velocity impact damage employing varying impact velocities (3 m/s, 3.5 m/s, and 4 m/s) was induced...

Full description

Saved in:
Bibliographic Details
Published in:Journal of composites science 2020, Vol.4 (3), p.99
Main Authors: Kannivel, Saravanakumar, Subramanian, Harini, Arumugam, Vellayaraj, Dhakal, Hom N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research work investigates the low-velocity impact induced damage behavior and its influence on the residual flexural response of glass/epoxy composites improved with milled glass fillers. The low-velocity impact damage employing varying impact velocities (3 m/s, 3.5 m/s, and 4 m/s) was induced on baseline and filler loaded samples with different fiber orientations. The residual performance and their damage modes were characterized using post impact flexural (FAI) test and acoustic emission (AE) monitoring. In all fiber orientations, the filler modified glass/epoxy samples showed improved impact strength and stiffness properties. A substantial improvement in impact damage tolerance, especially for samples impacted at 3.5 m/s and 4 m/s was observed. The presence of filler at the interlaminar zone contributed to improved energy dissipation through filler debonding and pull-out. This further contributed in arresting the crack growth, showing reduced damaged area. The inclusion of milled fibers on glass/epoxy laminates enhanced the impact toughness and residual flexural behavior.
ISSN:2504-477X
2504-477X
DOI:10.3390/jcs4030099