Loading…

A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers

Machine learning (ML) techniques have become important to support decision making in management and conservation of freshwater aquatic ecosystems. Given the large number of ML techniques and to improve the understanding of ML utility in ecology, it is necessary to perform comparative studies of thes...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge and management of aquatic ecosystems 2013-01 (409), p.7
Main Authors: Olaya-Marín, E.J., Martínez-Capel, F., Vezza, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-df6a11486291b9f27a10bb18d1770d99ba71db37dfd96e29fafaad25c60bb23c3
cites cdi_FETCH-LOGICAL-c377t-df6a11486291b9f27a10bb18d1770d99ba71db37dfd96e29fafaad25c60bb23c3
container_end_page
container_issue 409
container_start_page 7
container_title Knowledge and management of aquatic ecosystems
container_volume
creator Olaya-Marín, E.J.
Martínez-Capel, F.
Vezza, P.
description Machine learning (ML) techniques have become important to support decision making in management and conservation of freshwater aquatic ecosystems. Given the large number of ML techniques and to improve the understanding of ML utility in ecology, it is necessary to perform comparative studies of these techniques as a preparatory analysis for future model applications. The objectives of this study were (i) to compare the reliability and ecological relevance of two predictive models for fish richness, based on the techniques of artificial neural networks (ANN) and random forests (RF) and (ii) to evaluate the conformity in terms of selected important variables between the two modelling approaches. The effectiveness of the models were evaluated using three performance metrics: the determination coefficient (R2), the mean squared error (MSE) and the adjusted determination coefficient (R2adj and both models were developed using a k-fold crossvalidation procedure. According to the results, both techniques had similar validation performance (R2 = 68% for RF and R2 = 66% for ANN). Although the two methods selected different subsets of input variables, both models demonstrated high ecological relevance for the conservation of native fish in the Mediterranean region. Moreover, this work shows how the use of different modelling methods can assist the critical analysis of predictions at a catchment scale. Les techniques d’apprentissage automatique (ML) sont devenues importantes pour aider à la décision dans la gestion et la conservation des écosystèmes aquatiques d’eau douce. Étant donné le grand nombre de techniques ML pour améliorer la compréhension de l’utilité des ML en écologie, il est nécessaire de réaliser des études comparatives de ces techniques comme analyse préparatoire pour des applications de modèles futurs. Les objectifs de cette étude étaient : (i) de comparer la fiabilité et la pertinence écologique de deux modèles prédictifs pour la richesse de poisson, basé sur les techniques de réseaux de neurones artificiels (ANN) et les forêts aléatoires (RF) et (ii) d’évaluer la conformité en termes de sélection des variables importantes entre les deux approches de modélisation. L’efficacité des modèles a été évaluée au moyen de trois indicateurs de performance : le coefficient de détermination (R2), l’erreur quadratique moyenne (MSE) et le coefficient de détermination ajusté (R2adj et les deux modèles ont été développés en utilisant une procédure de validation cro
doi_str_mv 10.1051/kmae/2013052
format article
fullrecord <record><control><sourceid>istex_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b871619374aa42cf8bb7860391a89821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b871619374aa42cf8bb7860391a89821</doaj_id><sourcerecordid>ark_67375_80W_KZ6VZGSL_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-df6a11486291b9f27a10bb18d1770d99ba71db37dfd96e29fafaad25c60bb23c3</originalsourceid><addsrcrecordid>eNpNkclKBDEQhhtRcL35AHkAW1PJdNI5irjhiAc38BKqs2icmc6QxFEPvrs9joiXqqLq44Pir6p9oIdAGziazNAdMQqcNmyt2gIloFYNZev_5s1qO-dXSgVXI7lVfR0TE2dzTCHHnkRPMJXggwk4Jb17Sz-tvMc0yQR7S9JQ4oz4mFwumZRI5snZYArpsYSFIz7kF5LnzgSXSQrmpXc5k9CT6wErLg0Ch_1wWbiUd6sNj9Ps9n77TnV_dnp3clGPb84vT47HteFSltp6gQCjVjAFnfJMItCug9aClNQq1aEE23FpvVXCMeXRI1rWGDFgjBu-U12uvDbiq56nMMP0qSMG_bOI6Vkv_zZTp7tWggDF5QhxxIxvu062gnIF2KqWweA6WLlMijkn5_98QPUyBr2MQf_GMOD1Cg-5uI8_FtNEC8llo1v6qK-exMPT-e1Yj_k3FCWNHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers</title><source>Alma/SFX Local Collection</source><creator>Olaya-Marín, E.J. ; Martínez-Capel, F. ; Vezza, P.</creator><creatorcontrib>Olaya-Marín, E.J. ; Martínez-Capel, F. ; Vezza, P.</creatorcontrib><description>Machine learning (ML) techniques have become important to support decision making in management and conservation of freshwater aquatic ecosystems. Given the large number of ML techniques and to improve the understanding of ML utility in ecology, it is necessary to perform comparative studies of these techniques as a preparatory analysis for future model applications. The objectives of this study were (i) to compare the reliability and ecological relevance of two predictive models for fish richness, based on the techniques of artificial neural networks (ANN) and random forests (RF) and (ii) to evaluate the conformity in terms of selected important variables between the two modelling approaches. The effectiveness of the models were evaluated using three performance metrics: the determination coefficient (R2), the mean squared error (MSE) and the adjusted determination coefficient (R2adj and both models were developed using a k-fold crossvalidation procedure. According to the results, both techniques had similar validation performance (R2 = 68% for RF and R2 = 66% for ANN). Although the two methods selected different subsets of input variables, both models demonstrated high ecological relevance for the conservation of native fish in the Mediterranean region. Moreover, this work shows how the use of different modelling methods can assist the critical analysis of predictions at a catchment scale. Les techniques d’apprentissage automatique (ML) sont devenues importantes pour aider à la décision dans la gestion et la conservation des écosystèmes aquatiques d’eau douce. Étant donné le grand nombre de techniques ML pour améliorer la compréhension de l’utilité des ML en écologie, il est nécessaire de réaliser des études comparatives de ces techniques comme analyse préparatoire pour des applications de modèles futurs. Les objectifs de cette étude étaient : (i) de comparer la fiabilité et la pertinence écologique de deux modèles prédictifs pour la richesse de poisson, basé sur les techniques de réseaux de neurones artificiels (ANN) et les forêts aléatoires (RF) et (ii) d’évaluer la conformité en termes de sélection des variables importantes entre les deux approches de modélisation. L’efficacité des modèles a été évaluée au moyen de trois indicateurs de performance : le coefficient de détermination (R2), l’erreur quadratique moyenne (MSE) et le coefficient de détermination ajusté (R2adj et les deux modèles ont été développés en utilisant une procédure de validation croisée k-fold. Selon les résultats, les deux techniques ont des performances de validation similaires (R2 = 68 % pour RF et R2 = 66 % pour ANN). Bien que les deux méthodes aient choisi différents sous-ensembles de variables d’entrée, les deux modèles ont démontré la pertinence écologique pour la conservation des poissons indigènes dans la région méditerranéenne. En outre, ce travail montre comment l’utilisation de différentes méthodes de modélisation peut aider à l’analyse critique des prévisions à l’échelle du bassin versant.</description><identifier>ISSN: 1961-9502</identifier><identifier>EISSN: 1961-9502</identifier><identifier>DOI: 10.1051/kmae/2013052</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Artificial neural networks ; forêts aléatoires ; Mediterranean rivers ; native fish ; poissons indigènes ; random forests ; richesse spécifique ; rivières méditerranéennes ; Réseaux de neurones ; species richness</subject><ispartof>Knowledge and management of aquatic ecosystems, 2013-01 (409), p.7</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-df6a11486291b9f27a10bb18d1770d99ba71db37dfd96e29fafaad25c60bb23c3</citedby><cites>FETCH-LOGICAL-c377t-df6a11486291b9f27a10bb18d1770d99ba71db37dfd96e29fafaad25c60bb23c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Olaya-Marín, E.J.</creatorcontrib><creatorcontrib>Martínez-Capel, F.</creatorcontrib><creatorcontrib>Vezza, P.</creatorcontrib><title>A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers</title><title>Knowledge and management of aquatic ecosystems</title><description>Machine learning (ML) techniques have become important to support decision making in management and conservation of freshwater aquatic ecosystems. Given the large number of ML techniques and to improve the understanding of ML utility in ecology, it is necessary to perform comparative studies of these techniques as a preparatory analysis for future model applications. The objectives of this study were (i) to compare the reliability and ecological relevance of two predictive models for fish richness, based on the techniques of artificial neural networks (ANN) and random forests (RF) and (ii) to evaluate the conformity in terms of selected important variables between the two modelling approaches. The effectiveness of the models were evaluated using three performance metrics: the determination coefficient (R2), the mean squared error (MSE) and the adjusted determination coefficient (R2adj and both models were developed using a k-fold crossvalidation procedure. According to the results, both techniques had similar validation performance (R2 = 68% for RF and R2 = 66% for ANN). Although the two methods selected different subsets of input variables, both models demonstrated high ecological relevance for the conservation of native fish in the Mediterranean region. Moreover, this work shows how the use of different modelling methods can assist the critical analysis of predictions at a catchment scale. Les techniques d’apprentissage automatique (ML) sont devenues importantes pour aider à la décision dans la gestion et la conservation des écosystèmes aquatiques d’eau douce. Étant donné le grand nombre de techniques ML pour améliorer la compréhension de l’utilité des ML en écologie, il est nécessaire de réaliser des études comparatives de ces techniques comme analyse préparatoire pour des applications de modèles futurs. Les objectifs de cette étude étaient : (i) de comparer la fiabilité et la pertinence écologique de deux modèles prédictifs pour la richesse de poisson, basé sur les techniques de réseaux de neurones artificiels (ANN) et les forêts aléatoires (RF) et (ii) d’évaluer la conformité en termes de sélection des variables importantes entre les deux approches de modélisation. L’efficacité des modèles a été évaluée au moyen de trois indicateurs de performance : le coefficient de détermination (R2), l’erreur quadratique moyenne (MSE) et le coefficient de détermination ajusté (R2adj et les deux modèles ont été développés en utilisant une procédure de validation croisée k-fold. Selon les résultats, les deux techniques ont des performances de validation similaires (R2 = 68 % pour RF et R2 = 66 % pour ANN). Bien que les deux méthodes aient choisi différents sous-ensembles de variables d’entrée, les deux modèles ont démontré la pertinence écologique pour la conservation des poissons indigènes dans la région méditerranéenne. En outre, ce travail montre comment l’utilisation de différentes méthodes de modélisation peut aider à l’analyse critique des prévisions à l’échelle du bassin versant.</description><subject>Artificial neural networks</subject><subject>forêts aléatoires</subject><subject>Mediterranean rivers</subject><subject>native fish</subject><subject>poissons indigènes</subject><subject>random forests</subject><subject>richesse spécifique</subject><subject>rivières méditerranéennes</subject><subject>Réseaux de neurones</subject><subject>species richness</subject><issn>1961-9502</issn><issn>1961-9502</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkclKBDEQhhtRcL35AHkAW1PJdNI5irjhiAc38BKqs2icmc6QxFEPvrs9joiXqqLq44Pir6p9oIdAGziazNAdMQqcNmyt2gIloFYNZev_5s1qO-dXSgVXI7lVfR0TE2dzTCHHnkRPMJXggwk4Jb17Sz-tvMc0yQR7S9JQ4oz4mFwumZRI5snZYArpsYSFIz7kF5LnzgSXSQrmpXc5k9CT6wErLg0Ch_1wWbiUd6sNj9Ps9n77TnV_dnp3clGPb84vT47HteFSltp6gQCjVjAFnfJMItCug9aClNQq1aEE23FpvVXCMeXRI1rWGDFgjBu-U12uvDbiq56nMMP0qSMG_bOI6Vkv_zZTp7tWggDF5QhxxIxvu062gnIF2KqWweA6WLlMijkn5_98QPUyBr2MQf_GMOD1Cg-5uI8_FtNEC8llo1v6qK-exMPT-e1Yj_k3FCWNHw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Olaya-Marín, E.J.</creator><creator>Martínez-Capel, F.</creator><creator>Vezza, P.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20130101</creationdate><title>A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers</title><author>Olaya-Marín, E.J. ; Martínez-Capel, F. ; Vezza, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-df6a11486291b9f27a10bb18d1770d99ba71db37dfd96e29fafaad25c60bb23c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>forêts aléatoires</topic><topic>Mediterranean rivers</topic><topic>native fish</topic><topic>poissons indigènes</topic><topic>random forests</topic><topic>richesse spécifique</topic><topic>rivières méditerranéennes</topic><topic>Réseaux de neurones</topic><topic>species richness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olaya-Marín, E.J.</creatorcontrib><creatorcontrib>Martínez-Capel, F.</creatorcontrib><creatorcontrib>Vezza, P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Knowledge and management of aquatic ecosystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olaya-Marín, E.J.</au><au>Martínez-Capel, F.</au><au>Vezza, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers</atitle><jtitle>Knowledge and management of aquatic ecosystems</jtitle><date>2013-01-01</date><risdate>2013</risdate><issue>409</issue><spage>7</spage><pages>7-</pages><issn>1961-9502</issn><eissn>1961-9502</eissn><abstract>Machine learning (ML) techniques have become important to support decision making in management and conservation of freshwater aquatic ecosystems. Given the large number of ML techniques and to improve the understanding of ML utility in ecology, it is necessary to perform comparative studies of these techniques as a preparatory analysis for future model applications. The objectives of this study were (i) to compare the reliability and ecological relevance of two predictive models for fish richness, based on the techniques of artificial neural networks (ANN) and random forests (RF) and (ii) to evaluate the conformity in terms of selected important variables between the two modelling approaches. The effectiveness of the models were evaluated using three performance metrics: the determination coefficient (R2), the mean squared error (MSE) and the adjusted determination coefficient (R2adj and both models were developed using a k-fold crossvalidation procedure. According to the results, both techniques had similar validation performance (R2 = 68% for RF and R2 = 66% for ANN). Although the two methods selected different subsets of input variables, both models demonstrated high ecological relevance for the conservation of native fish in the Mediterranean region. Moreover, this work shows how the use of different modelling methods can assist the critical analysis of predictions at a catchment scale. Les techniques d’apprentissage automatique (ML) sont devenues importantes pour aider à la décision dans la gestion et la conservation des écosystèmes aquatiques d’eau douce. Étant donné le grand nombre de techniques ML pour améliorer la compréhension de l’utilité des ML en écologie, il est nécessaire de réaliser des études comparatives de ces techniques comme analyse préparatoire pour des applications de modèles futurs. Les objectifs de cette étude étaient : (i) de comparer la fiabilité et la pertinence écologique de deux modèles prédictifs pour la richesse de poisson, basé sur les techniques de réseaux de neurones artificiels (ANN) et les forêts aléatoires (RF) et (ii) d’évaluer la conformité en termes de sélection des variables importantes entre les deux approches de modélisation. L’efficacité des modèles a été évaluée au moyen de trois indicateurs de performance : le coefficient de détermination (R2), l’erreur quadratique moyenne (MSE) et le coefficient de détermination ajusté (R2adj et les deux modèles ont été développés en utilisant une procédure de validation croisée k-fold. Selon les résultats, les deux techniques ont des performances de validation similaires (R2 = 68 % pour RF et R2 = 66 % pour ANN). Bien que les deux méthodes aient choisi différents sous-ensembles de variables d’entrée, les deux modèles ont démontré la pertinence écologique pour la conservation des poissons indigènes dans la région méditerranéenne. En outre, ce travail montre comment l’utilisation de différentes méthodes de modélisation peut aider à l’analyse critique des prévisions à l’échelle du bassin versant.</abstract><pub>EDP Sciences</pub><doi>10.1051/kmae/2013052</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1961-9502
ispartof Knowledge and management of aquatic ecosystems, 2013-01 (409), p.7
issn 1961-9502
1961-9502
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b871619374aa42cf8bb7860391a89821
source Alma/SFX Local Collection
subjects Artificial neural networks
forêts aléatoires
Mediterranean rivers
native fish
poissons indigènes
random forests
richesse spécifique
rivières méditerranéennes
Réseaux de neurones
species richness
title A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20artificial%20neural%20networks%20and%20random%20forests%20to%20predict%20native%20fish%20species%20richness%20in%20Mediterranean%20rivers&rft.jtitle=Knowledge%20and%20management%20of%20aquatic%20ecosystems&rft.au=Olaya-Mar%C3%ADn,%20E.J.&rft.date=2013-01-01&rft.issue=409&rft.spage=7&rft.pages=7-&rft.issn=1961-9502&rft.eissn=1961-9502&rft_id=info:doi/10.1051/kmae/2013052&rft_dat=%3Cistex_doaj_%3Eark_67375_80W_KZ6VZGSL_L%3C/istex_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-df6a11486291b9f27a10bb18d1770d99ba71db37dfd96e29fafaad25c60bb23c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true