Loading…
Development of high-energy fiber CPA system
An intense broadband laser system based on a Nd: glass chirped pulse amplifier (CPA) requires a stable front end with good beam quality. To prepare such a front end without using a regenerative amplifier or optical parametric chirped pulse amplification (OPCPA) pumped by the second harmonic of a Nd:...
Saved in:
Published in: | EPJ Web of conferences 2013-01, Vol.59, p.7004-np |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An intense broadband laser system based on a Nd: glass chirped pulse amplifier (CPA) requires a stable front end with good beam quality. To prepare such a front end without using a regenerative amplifier or optical parametric chirped pulse amplification (OPCPA) pumped by the second harmonic of a Nd:YAG laser, we have developed a fiber CPA system using laser diode (LD)-pumped single-mode fibers, large-mode-area (LMA) fibers, and photonic-crystal (rod) fibers. The output pulse energy achieved was 1.2 mJ at a central wavelength of 1053 nm with a spectral width of 10 nm. The power fluctuation was reduced to 0.4% rms at a repetition rate of 10 kHz. The output of this fiber laser is useful as a pump source for a few-cycle noncollinear optical parametric amplifier (NOPA) and a seed for a LD-pumped high-power Nd: glass CPA system. |
---|---|
ISSN: | 2100-014X 2100-014X |
DOI: | 10.1051/epjconf/20135907004 |