Loading…

Comparative single-cell analysis reveals heterogeneous immune landscapes in adenocarcinoma of the esophagogastric junction and gastric adenocarcinoma

Adenocarcinoma of the esophagogastric junction (AEG) is a type of tumor that arises at the anatomical junction of the esophagus and stomach. Although AEG is commonly classified as a subtype of gastric adenocarcinoma (GAC), the tumor microenvironment (TME) of AEG remains poorly understood. To address...

Full description

Saved in:
Bibliographic Details
Published in:Cell death & disease 2024-01, Vol.15 (1), p.15-15, Article 15
Main Authors: Chen, Jierong, Huang, Qunsheng, Li, Yi-Qi, Li, Zhi, Zheng, Jiabin, Hu, Weixian, Yang, Yuesheng, Wu, Deqing, Bei, Jin-Xin, Gu, Bing, Wang, Junjiang, Li, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adenocarcinoma of the esophagogastric junction (AEG) is a type of tumor that arises at the anatomical junction of the esophagus and stomach. Although AEG is commonly classified as a subtype of gastric adenocarcinoma (GAC), the tumor microenvironment (TME) of AEG remains poorly understood. To address this issue, we conducted single-cell RNA sequencing (scRNA-seq) on tumor and adjacent normal tissues from four AEG patients and performed integrated analysis with publicly available GAC single-cell datasets. Our study for the first time comprehensively deciphered the TME landscape of AEG, where heterogeneous AEG malignant cells were identified with diverse biological functions and intrinsic malignant nature. We also depicted transcriptional signatures and T cell receptor (TCR) repertoires for T cell subclusters, revealing enhanced exhaustion and reduced clone expansion along the developmental trajectory of tumor-infiltrating T cells within AEG. Notably, we observed prominent enrichment of tumorigenic cancer-associated fibroblasts (CAFs) in the AEG TME compared to GAC. These CAFs played a critical regulatory role in the intercellular communication network with other cell types in the AEG TME. Furthermore, we identified that the accumulation of CAFs in AEG might be induced by malignant cells through FGF-FGFR axes. Our findings provide a comprehensive depiction of the AEG TME, which underlies potential therapeutic targets for AEG patient treatment.
ISSN:2041-4889
2041-4889
DOI:10.1038/s41419-023-06388-6