Loading…

A comparative study on microstructures of a high-Zn AlZnMgCuZr alloy fabricated by casting and melt spinning

A high-Zn Al–27Zn-1.5Mg-1.2Cu-0.08Zr alloy was prepared by traditional casting and melt spinning. The as-casted alloy consists of well-developed α-Al dendrites with many coarse η-phase and low solute concentration, coarse network precipitates at grain boundaries and the α-Al/η-phase eutectic structu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research and technology 2024-09, Vol.32, p.13-22
Main Authors: Meng, Xianna, Qiu, Cheng, Chen, Wanglin, Zhang, Datong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high-Zn Al–27Zn-1.5Mg-1.2Cu-0.08Zr alloy was prepared by traditional casting and melt spinning. The as-casted alloy consists of well-developed α-Al dendrites with many coarse η-phase and low solute concentration, coarse network precipitates at grain boundaries and the α-Al/η-phase eutectic structures at triple junctions. Due to these featured structures, the as-cast alloy exhibits a low tensile strength of 101 MPa with room temperature and high temperature (300 °C) damping capacity of 0.0058 and 0.027 respectively. Comparatively, the as-spun alloy reveals gradient cross-sectional microstructures after solidification: an ultrafine grained region near the wheel surface, a transition region and an equiaxed-grained region near the ribbon free surface, with changes of precipitate morphologies from granular shape to network shape via vermicular. High-density nano-sized η′-phase/GP-zones within α-Al grains result in a higher tensile strength (121 MPa) of as-spun alloy with room temperature and high temperature (300 °C) damping capacity of 0.0049 and 0.048 respectively. Fracture analysis shows that the as-casted alloy fails in a mixed-mode fracture, comprised predominantly of transgranular fracture, quasi-cleavage fracture, cleavage fracture and dimple fracture, whereas the as-spun alloy failed in cleavage fracture and dimple fracture.
ISSN:2238-7854
DOI:10.1016/j.jmrt.2024.07.154