Loading…
Aspirin Recapitulates Features of Caloric Restriction
The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to...
Saved in:
Published in: | Cell reports (Cambridge) 2018-02, Vol.22 (9), p.2395-2407 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93 |
container_end_page | 2407 |
container_issue | 9 |
container_start_page | 2395 |
container_title | Cell reports (Cambridge) |
container_volume | 22 |
creator | Pietrocola, Federico Castoldi, Francesca Markaki, Maria Lachkar, Sylvie Chen, Guo Enot, David P. Durand, Sylvere Bossut, Noelie Tong, Mingming Malik, Shoaib A. Loos, Friedemann Dupont, Nicolas Mariño, Guillermo Abdelkader, Nejma Madeo, Frank Maiuri, Maria Chiara Kroemer, Romano Codogno, Patrice Sadoshima, Junichi Tavernarakis, Nektarios Kroemer, Guido |
description | The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to reduce the overall levels of protein acetylation and to induce autophagy have been categorized as caloric restriction mimetics (CRMs). Here, we show that aspirin or its active metabolite salicylate induce autophagy by virtue of their capacity to inhibit the acetyltransferase activity of EP300. While salicylate readily stimulates autophagic flux in control cells, it fails to further increase autophagy levels in EP300-deficient cells, as well as in cells in which endogenous EP300 has been replaced by salicylate-resistant EP300 mutants. Accordingly, the pro-autophagic activity of aspirin and salicylate on the nematode Caenorhabditis elegans is lost when the expression of the EP300 ortholog cpb-1 is reduced. Altogether, these findings identify aspirin as an evolutionary conserved CRM.
[Display omitted]
•The aspirin metabolite, salicylate, competitively inhibits EP300 acetyltransferase•EP300 inhibition is epistatic to autophagy induction by salicylate•Aspirin triggers cardioprotective mitophagy in mice and nematodes
Pietrocola et al. show that the inhibition of the acetyltransferase EP300 is determinant for the autophagy-inducing effect of aspirin and its active metabolite salicylate. As a proof of the evolutionarily conserved nature of this mechanism, the authors demonstrate that aspirin triggers protective autophagy in mice and in the nematode C. elegans. |
doi_str_mv | 10.1016/j.celrep.2018.02.024 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b89ef8b05b1f4e6c81de51c768fde74d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221112471830192X</els_id><doaj_id>oai_doaj_org_article_b89ef8b05b1f4e6c81de51c768fde74d</doaj_id><sourcerecordid>S221112471830192X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93</originalsourceid><addsrcrecordid>eNp9kd9qXCEQxqWkNCHNG5SwL7Bb9ehRbwJhadqFQKC01-KfMXVzcjyom5K3j9uTJtmbyMgMOt9vxA-hLwSvCCb91-3KwZBhWlFM5ArTFuwDOqGUkCWhTBy9qY_RWSlb3FaPCVHsEzqmiilMBT9B_LJMMcdx8ROcmWLdDaZCWVyBqbvcihQWazOkHF3rKLXlGtP4GX0MZihw9pxP0e-rb7_WP5bXN98368vrpeNC1SWVwikVBBe9pR5zCzxYYqyiEoMAS7HxEAJ02FkuHfUeKKNG9SL0lIPqTtFm5vpktnrK8d7kR51M1P8OUr7VJtfoBtBWKgjStiEkMOidJB44caKXwYNgvrHUzCp_YdrZA9qUk9fP53dxv3UBTTohOtZ1pGkvZm1ruAfvYKzZDIeIg5sx_tG36UFzyaTksgHYDHA5lZIhvGgJ1ntH9VbPjuq9oxrTFqzJzt_OfRH99-_1YdBceIiQdXERRgc-ZnC1fVN8f8ITK2G2fQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aspirin Recapitulates Features of Caloric Restriction</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Pietrocola, Federico ; Castoldi, Francesca ; Markaki, Maria ; Lachkar, Sylvie ; Chen, Guo ; Enot, David P. ; Durand, Sylvere ; Bossut, Noelie ; Tong, Mingming ; Malik, Shoaib A. ; Loos, Friedemann ; Dupont, Nicolas ; Mariño, Guillermo ; Abdelkader, Nejma ; Madeo, Frank ; Maiuri, Maria Chiara ; Kroemer, Romano ; Codogno, Patrice ; Sadoshima, Junichi ; Tavernarakis, Nektarios ; Kroemer, Guido</creator><creatorcontrib>Pietrocola, Federico ; Castoldi, Francesca ; Markaki, Maria ; Lachkar, Sylvie ; Chen, Guo ; Enot, David P. ; Durand, Sylvere ; Bossut, Noelie ; Tong, Mingming ; Malik, Shoaib A. ; Loos, Friedemann ; Dupont, Nicolas ; Mariño, Guillermo ; Abdelkader, Nejma ; Madeo, Frank ; Maiuri, Maria Chiara ; Kroemer, Romano ; Codogno, Patrice ; Sadoshima, Junichi ; Tavernarakis, Nektarios ; Kroemer, Guido</creatorcontrib><description>The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to reduce the overall levels of protein acetylation and to induce autophagy have been categorized as caloric restriction mimetics (CRMs). Here, we show that aspirin or its active metabolite salicylate induce autophagy by virtue of their capacity to inhibit the acetyltransferase activity of EP300. While salicylate readily stimulates autophagic flux in control cells, it fails to further increase autophagy levels in EP300-deficient cells, as well as in cells in which endogenous EP300 has been replaced by salicylate-resistant EP300 mutants. Accordingly, the pro-autophagic activity of aspirin and salicylate on the nematode Caenorhabditis elegans is lost when the expression of the EP300 ortholog cpb-1 is reduced. Altogether, these findings identify aspirin as an evolutionary conserved CRM.
[Display omitted]
•The aspirin metabolite, salicylate, competitively inhibits EP300 acetyltransferase•EP300 inhibition is epistatic to autophagy induction by salicylate•Aspirin triggers cardioprotective mitophagy in mice and nematodes
Pietrocola et al. show that the inhibition of the acetyltransferase EP300 is determinant for the autophagy-inducing effect of aspirin and its active metabolite salicylate. As a proof of the evolutionarily conserved nature of this mechanism, the authors demonstrate that aspirin triggers protective autophagy in mice and in the nematode C. elegans.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2018.02.024</identifier><identifier>PMID: 29490275</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetyl Coenzyme A - metabolism ; acetylation ; aging ; Animals ; Aspirin - pharmacology ; autophagy ; Autophagy - drug effects ; Autophagy - genetics ; Caloric Restriction ; Cell Line, Tumor ; E1A-Associated p300 Protein - metabolism ; EP300 ; Humans ; longevity ; Medicin och hälsovetenskap ; metabolome ; Metabolome - drug effects ; Metabolomics ; Mice, Inbred C57BL ; salicylate</subject><ispartof>Cell reports (Cambridge), 2018-02, Vol.22 (9), p.2395-2407</ispartof><rights>2018 The Author(s)</rights><rights>Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93</citedby><cites>FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29490275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:137734331$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pietrocola, Federico</creatorcontrib><creatorcontrib>Castoldi, Francesca</creatorcontrib><creatorcontrib>Markaki, Maria</creatorcontrib><creatorcontrib>Lachkar, Sylvie</creatorcontrib><creatorcontrib>Chen, Guo</creatorcontrib><creatorcontrib>Enot, David P.</creatorcontrib><creatorcontrib>Durand, Sylvere</creatorcontrib><creatorcontrib>Bossut, Noelie</creatorcontrib><creatorcontrib>Tong, Mingming</creatorcontrib><creatorcontrib>Malik, Shoaib A.</creatorcontrib><creatorcontrib>Loos, Friedemann</creatorcontrib><creatorcontrib>Dupont, Nicolas</creatorcontrib><creatorcontrib>Mariño, Guillermo</creatorcontrib><creatorcontrib>Abdelkader, Nejma</creatorcontrib><creatorcontrib>Madeo, Frank</creatorcontrib><creatorcontrib>Maiuri, Maria Chiara</creatorcontrib><creatorcontrib>Kroemer, Romano</creatorcontrib><creatorcontrib>Codogno, Patrice</creatorcontrib><creatorcontrib>Sadoshima, Junichi</creatorcontrib><creatorcontrib>Tavernarakis, Nektarios</creatorcontrib><creatorcontrib>Kroemer, Guido</creatorcontrib><title>Aspirin Recapitulates Features of Caloric Restriction</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to reduce the overall levels of protein acetylation and to induce autophagy have been categorized as caloric restriction mimetics (CRMs). Here, we show that aspirin or its active metabolite salicylate induce autophagy by virtue of their capacity to inhibit the acetyltransferase activity of EP300. While salicylate readily stimulates autophagic flux in control cells, it fails to further increase autophagy levels in EP300-deficient cells, as well as in cells in which endogenous EP300 has been replaced by salicylate-resistant EP300 mutants. Accordingly, the pro-autophagic activity of aspirin and salicylate on the nematode Caenorhabditis elegans is lost when the expression of the EP300 ortholog cpb-1 is reduced. Altogether, these findings identify aspirin as an evolutionary conserved CRM.
[Display omitted]
•The aspirin metabolite, salicylate, competitively inhibits EP300 acetyltransferase•EP300 inhibition is epistatic to autophagy induction by salicylate•Aspirin triggers cardioprotective mitophagy in mice and nematodes
Pietrocola et al. show that the inhibition of the acetyltransferase EP300 is determinant for the autophagy-inducing effect of aspirin and its active metabolite salicylate. As a proof of the evolutionarily conserved nature of this mechanism, the authors demonstrate that aspirin triggers protective autophagy in mice and in the nematode C. elegans.</description><subject>Acetyl Coenzyme A - metabolism</subject><subject>acetylation</subject><subject>aging</subject><subject>Animals</subject><subject>Aspirin - pharmacology</subject><subject>autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - genetics</subject><subject>Caloric Restriction</subject><subject>Cell Line, Tumor</subject><subject>E1A-Associated p300 Protein - metabolism</subject><subject>EP300</subject><subject>Humans</subject><subject>longevity</subject><subject>Medicin och hälsovetenskap</subject><subject>metabolome</subject><subject>Metabolome - drug effects</subject><subject>Metabolomics</subject><subject>Mice, Inbred C57BL</subject><subject>salicylate</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kd9qXCEQxqWkNCHNG5SwL7Bb9ehRbwJhadqFQKC01-KfMXVzcjyom5K3j9uTJtmbyMgMOt9vxA-hLwSvCCb91-3KwZBhWlFM5ArTFuwDOqGUkCWhTBy9qY_RWSlb3FaPCVHsEzqmiilMBT9B_LJMMcdx8ROcmWLdDaZCWVyBqbvcihQWazOkHF3rKLXlGtP4GX0MZihw9pxP0e-rb7_WP5bXN98368vrpeNC1SWVwikVBBe9pR5zCzxYYqyiEoMAS7HxEAJ02FkuHfUeKKNG9SL0lIPqTtFm5vpktnrK8d7kR51M1P8OUr7VJtfoBtBWKgjStiEkMOidJB44caKXwYNgvrHUzCp_YdrZA9qUk9fP53dxv3UBTTohOtZ1pGkvZm1ruAfvYKzZDIeIg5sx_tG36UFzyaTksgHYDHA5lZIhvGgJ1ntH9VbPjuq9oxrTFqzJzt_OfRH99-_1YdBceIiQdXERRgc-ZnC1fVN8f8ITK2G2fQ</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Pietrocola, Federico</creator><creator>Castoldi, Francesca</creator><creator>Markaki, Maria</creator><creator>Lachkar, Sylvie</creator><creator>Chen, Guo</creator><creator>Enot, David P.</creator><creator>Durand, Sylvere</creator><creator>Bossut, Noelie</creator><creator>Tong, Mingming</creator><creator>Malik, Shoaib A.</creator><creator>Loos, Friedemann</creator><creator>Dupont, Nicolas</creator><creator>Mariño, Guillermo</creator><creator>Abdelkader, Nejma</creator><creator>Madeo, Frank</creator><creator>Maiuri, Maria Chiara</creator><creator>Kroemer, Romano</creator><creator>Codogno, Patrice</creator><creator>Sadoshima, Junichi</creator><creator>Tavernarakis, Nektarios</creator><creator>Kroemer, Guido</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20180227</creationdate><title>Aspirin Recapitulates Features of Caloric Restriction</title><author>Pietrocola, Federico ; Castoldi, Francesca ; Markaki, Maria ; Lachkar, Sylvie ; Chen, Guo ; Enot, David P. ; Durand, Sylvere ; Bossut, Noelie ; Tong, Mingming ; Malik, Shoaib A. ; Loos, Friedemann ; Dupont, Nicolas ; Mariño, Guillermo ; Abdelkader, Nejma ; Madeo, Frank ; Maiuri, Maria Chiara ; Kroemer, Romano ; Codogno, Patrice ; Sadoshima, Junichi ; Tavernarakis, Nektarios ; Kroemer, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetyl Coenzyme A - metabolism</topic><topic>acetylation</topic><topic>aging</topic><topic>Animals</topic><topic>Aspirin - pharmacology</topic><topic>autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - genetics</topic><topic>Caloric Restriction</topic><topic>Cell Line, Tumor</topic><topic>E1A-Associated p300 Protein - metabolism</topic><topic>EP300</topic><topic>Humans</topic><topic>longevity</topic><topic>Medicin och hälsovetenskap</topic><topic>metabolome</topic><topic>Metabolome - drug effects</topic><topic>Metabolomics</topic><topic>Mice, Inbred C57BL</topic><topic>salicylate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pietrocola, Federico</creatorcontrib><creatorcontrib>Castoldi, Francesca</creatorcontrib><creatorcontrib>Markaki, Maria</creatorcontrib><creatorcontrib>Lachkar, Sylvie</creatorcontrib><creatorcontrib>Chen, Guo</creatorcontrib><creatorcontrib>Enot, David P.</creatorcontrib><creatorcontrib>Durand, Sylvere</creatorcontrib><creatorcontrib>Bossut, Noelie</creatorcontrib><creatorcontrib>Tong, Mingming</creatorcontrib><creatorcontrib>Malik, Shoaib A.</creatorcontrib><creatorcontrib>Loos, Friedemann</creatorcontrib><creatorcontrib>Dupont, Nicolas</creatorcontrib><creatorcontrib>Mariño, Guillermo</creatorcontrib><creatorcontrib>Abdelkader, Nejma</creatorcontrib><creatorcontrib>Madeo, Frank</creatorcontrib><creatorcontrib>Maiuri, Maria Chiara</creatorcontrib><creatorcontrib>Kroemer, Romano</creatorcontrib><creatorcontrib>Codogno, Patrice</creatorcontrib><creatorcontrib>Sadoshima, Junichi</creatorcontrib><creatorcontrib>Tavernarakis, Nektarios</creatorcontrib><creatorcontrib>Kroemer, Guido</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pietrocola, Federico</au><au>Castoldi, Francesca</au><au>Markaki, Maria</au><au>Lachkar, Sylvie</au><au>Chen, Guo</au><au>Enot, David P.</au><au>Durand, Sylvere</au><au>Bossut, Noelie</au><au>Tong, Mingming</au><au>Malik, Shoaib A.</au><au>Loos, Friedemann</au><au>Dupont, Nicolas</au><au>Mariño, Guillermo</au><au>Abdelkader, Nejma</au><au>Madeo, Frank</au><au>Maiuri, Maria Chiara</au><au>Kroemer, Romano</au><au>Codogno, Patrice</au><au>Sadoshima, Junichi</au><au>Tavernarakis, Nektarios</au><au>Kroemer, Guido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aspirin Recapitulates Features of Caloric Restriction</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2018-02-27</date><risdate>2018</risdate><volume>22</volume><issue>9</issue><spage>2395</spage><epage>2407</epage><pages>2395-2407</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to reduce the overall levels of protein acetylation and to induce autophagy have been categorized as caloric restriction mimetics (CRMs). Here, we show that aspirin or its active metabolite salicylate induce autophagy by virtue of their capacity to inhibit the acetyltransferase activity of EP300. While salicylate readily stimulates autophagic flux in control cells, it fails to further increase autophagy levels in EP300-deficient cells, as well as in cells in which endogenous EP300 has been replaced by salicylate-resistant EP300 mutants. Accordingly, the pro-autophagic activity of aspirin and salicylate on the nematode Caenorhabditis elegans is lost when the expression of the EP300 ortholog cpb-1 is reduced. Altogether, these findings identify aspirin as an evolutionary conserved CRM.
[Display omitted]
•The aspirin metabolite, salicylate, competitively inhibits EP300 acetyltransferase•EP300 inhibition is epistatic to autophagy induction by salicylate•Aspirin triggers cardioprotective mitophagy in mice and nematodes
Pietrocola et al. show that the inhibition of the acetyltransferase EP300 is determinant for the autophagy-inducing effect of aspirin and its active metabolite salicylate. As a proof of the evolutionarily conserved nature of this mechanism, the authors demonstrate that aspirin triggers protective autophagy in mice and in the nematode C. elegans.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29490275</pmid><doi>10.1016/j.celrep.2018.02.024</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2018-02, Vol.22 (9), p.2395-2407 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b89ef8b05b1f4e6c81de51c768fde74d |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Acetyl Coenzyme A - metabolism acetylation aging Animals Aspirin - pharmacology autophagy Autophagy - drug effects Autophagy - genetics Caloric Restriction Cell Line, Tumor E1A-Associated p300 Protein - metabolism EP300 Humans longevity Medicin och hälsovetenskap metabolome Metabolome - drug effects Metabolomics Mice, Inbred C57BL salicylate |
title | Aspirin Recapitulates Features of Caloric Restriction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aspirin%20Recapitulates%20Features%20of%20Caloric%20Restriction&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Pietrocola,%20Federico&rft.date=2018-02-27&rft.volume=22&rft.issue=9&rft.spage=2395&rft.epage=2407&rft.pages=2395-2407&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2018.02.024&rft_dat=%3Celsevier_doaj_%3ES221112471830192X%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/29490275&rfr_iscdi=true |