Loading…

Aspirin Recapitulates Features of Caloric Restriction

The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2018-02, Vol.22 (9), p.2395-2407
Main Authors: Pietrocola, Federico, Castoldi, Francesca, Markaki, Maria, Lachkar, Sylvie, Chen, Guo, Enot, David P., Durand, Sylvere, Bossut, Noelie, Tong, Mingming, Malik, Shoaib A., Loos, Friedemann, Dupont, Nicolas, Mariño, Guillermo, Abdelkader, Nejma, Madeo, Frank, Maiuri, Maria Chiara, Kroemer, Romano, Codogno, Patrice, Sadoshima, Junichi, Tavernarakis, Nektarios, Kroemer, Guido
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93
cites cdi_FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93
container_end_page 2407
container_issue 9
container_start_page 2395
container_title Cell reports (Cambridge)
container_volume 22
creator Pietrocola, Federico
Castoldi, Francesca
Markaki, Maria
Lachkar, Sylvie
Chen, Guo
Enot, David P.
Durand, Sylvere
Bossut, Noelie
Tong, Mingming
Malik, Shoaib A.
Loos, Friedemann
Dupont, Nicolas
Mariño, Guillermo
Abdelkader, Nejma
Madeo, Frank
Maiuri, Maria Chiara
Kroemer, Romano
Codogno, Patrice
Sadoshima, Junichi
Tavernarakis, Nektarios
Kroemer, Guido
description The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to reduce the overall levels of protein acetylation and to induce autophagy have been categorized as caloric restriction mimetics (CRMs). Here, we show that aspirin or its active metabolite salicylate induce autophagy by virtue of their capacity to inhibit the acetyltransferase activity of EP300. While salicylate readily stimulates autophagic flux in control cells, it fails to further increase autophagy levels in EP300-deficient cells, as well as in cells in which endogenous EP300 has been replaced by salicylate-resistant EP300 mutants. Accordingly, the pro-autophagic activity of aspirin and salicylate on the nematode Caenorhabditis elegans is lost when the expression of the EP300 ortholog cpb-1 is reduced. Altogether, these findings identify aspirin as an evolutionary conserved CRM. [Display omitted] •The aspirin metabolite, salicylate, competitively inhibits EP300 acetyltransferase•EP300 inhibition is epistatic to autophagy induction by salicylate•Aspirin triggers cardioprotective mitophagy in mice and nematodes Pietrocola et al. show that the inhibition of the acetyltransferase EP300 is determinant for the autophagy-inducing effect of aspirin and its active metabolite salicylate. As a proof of the evolutionarily conserved nature of this mechanism, the authors demonstrate that aspirin triggers protective autophagy in mice and in the nematode C. elegans.
doi_str_mv 10.1016/j.celrep.2018.02.024
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b89ef8b05b1f4e6c81de51c768fde74d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221112471830192X</els_id><doaj_id>oai_doaj_org_article_b89ef8b05b1f4e6c81de51c768fde74d</doaj_id><sourcerecordid>S221112471830192X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93</originalsourceid><addsrcrecordid>eNp9kd9qXCEQxqWkNCHNG5SwL7Bb9ehRbwJhadqFQKC01-KfMXVzcjyom5K3j9uTJtmbyMgMOt9vxA-hLwSvCCb91-3KwZBhWlFM5ArTFuwDOqGUkCWhTBy9qY_RWSlb3FaPCVHsEzqmiilMBT9B_LJMMcdx8ROcmWLdDaZCWVyBqbvcihQWazOkHF3rKLXlGtP4GX0MZihw9pxP0e-rb7_WP5bXN98368vrpeNC1SWVwikVBBe9pR5zCzxYYqyiEoMAS7HxEAJ02FkuHfUeKKNG9SL0lIPqTtFm5vpktnrK8d7kR51M1P8OUr7VJtfoBtBWKgjStiEkMOidJB44caKXwYNgvrHUzCp_YdrZA9qUk9fP53dxv3UBTTohOtZ1pGkvZm1ruAfvYKzZDIeIg5sx_tG36UFzyaTksgHYDHA5lZIhvGgJ1ntH9VbPjuq9oxrTFqzJzt_OfRH99-_1YdBceIiQdXERRgc-ZnC1fVN8f8ITK2G2fQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aspirin Recapitulates Features of Caloric Restriction</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Pietrocola, Federico ; Castoldi, Francesca ; Markaki, Maria ; Lachkar, Sylvie ; Chen, Guo ; Enot, David P. ; Durand, Sylvere ; Bossut, Noelie ; Tong, Mingming ; Malik, Shoaib A. ; Loos, Friedemann ; Dupont, Nicolas ; Mariño, Guillermo ; Abdelkader, Nejma ; Madeo, Frank ; Maiuri, Maria Chiara ; Kroemer, Romano ; Codogno, Patrice ; Sadoshima, Junichi ; Tavernarakis, Nektarios ; Kroemer, Guido</creator><creatorcontrib>Pietrocola, Federico ; Castoldi, Francesca ; Markaki, Maria ; Lachkar, Sylvie ; Chen, Guo ; Enot, David P. ; Durand, Sylvere ; Bossut, Noelie ; Tong, Mingming ; Malik, Shoaib A. ; Loos, Friedemann ; Dupont, Nicolas ; Mariño, Guillermo ; Abdelkader, Nejma ; Madeo, Frank ; Maiuri, Maria Chiara ; Kroemer, Romano ; Codogno, Patrice ; Sadoshima, Junichi ; Tavernarakis, Nektarios ; Kroemer, Guido</creatorcontrib><description>The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to reduce the overall levels of protein acetylation and to induce autophagy have been categorized as caloric restriction mimetics (CRMs). Here, we show that aspirin or its active metabolite salicylate induce autophagy by virtue of their capacity to inhibit the acetyltransferase activity of EP300. While salicylate readily stimulates autophagic flux in control cells, it fails to further increase autophagy levels in EP300-deficient cells, as well as in cells in which endogenous EP300 has been replaced by salicylate-resistant EP300 mutants. Accordingly, the pro-autophagic activity of aspirin and salicylate on the nematode Caenorhabditis elegans is lost when the expression of the EP300 ortholog cpb-1 is reduced. Altogether, these findings identify aspirin as an evolutionary conserved CRM. [Display omitted] •The aspirin metabolite, salicylate, competitively inhibits EP300 acetyltransferase•EP300 inhibition is epistatic to autophagy induction by salicylate•Aspirin triggers cardioprotective mitophagy in mice and nematodes Pietrocola et al. show that the inhibition of the acetyltransferase EP300 is determinant for the autophagy-inducing effect of aspirin and its active metabolite salicylate. As a proof of the evolutionarily conserved nature of this mechanism, the authors demonstrate that aspirin triggers protective autophagy in mice and in the nematode C. elegans.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2018.02.024</identifier><identifier>PMID: 29490275</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetyl Coenzyme A - metabolism ; acetylation ; aging ; Animals ; Aspirin - pharmacology ; autophagy ; Autophagy - drug effects ; Autophagy - genetics ; Caloric Restriction ; Cell Line, Tumor ; E1A-Associated p300 Protein - metabolism ; EP300 ; Humans ; longevity ; Medicin och hälsovetenskap ; metabolome ; Metabolome - drug effects ; Metabolomics ; Mice, Inbred C57BL ; salicylate</subject><ispartof>Cell reports (Cambridge), 2018-02, Vol.22 (9), p.2395-2407</ispartof><rights>2018 The Author(s)</rights><rights>Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93</citedby><cites>FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29490275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:137734331$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pietrocola, Federico</creatorcontrib><creatorcontrib>Castoldi, Francesca</creatorcontrib><creatorcontrib>Markaki, Maria</creatorcontrib><creatorcontrib>Lachkar, Sylvie</creatorcontrib><creatorcontrib>Chen, Guo</creatorcontrib><creatorcontrib>Enot, David P.</creatorcontrib><creatorcontrib>Durand, Sylvere</creatorcontrib><creatorcontrib>Bossut, Noelie</creatorcontrib><creatorcontrib>Tong, Mingming</creatorcontrib><creatorcontrib>Malik, Shoaib A.</creatorcontrib><creatorcontrib>Loos, Friedemann</creatorcontrib><creatorcontrib>Dupont, Nicolas</creatorcontrib><creatorcontrib>Mariño, Guillermo</creatorcontrib><creatorcontrib>Abdelkader, Nejma</creatorcontrib><creatorcontrib>Madeo, Frank</creatorcontrib><creatorcontrib>Maiuri, Maria Chiara</creatorcontrib><creatorcontrib>Kroemer, Romano</creatorcontrib><creatorcontrib>Codogno, Patrice</creatorcontrib><creatorcontrib>Sadoshima, Junichi</creatorcontrib><creatorcontrib>Tavernarakis, Nektarios</creatorcontrib><creatorcontrib>Kroemer, Guido</creatorcontrib><title>Aspirin Recapitulates Features of Caloric Restriction</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to reduce the overall levels of protein acetylation and to induce autophagy have been categorized as caloric restriction mimetics (CRMs). Here, we show that aspirin or its active metabolite salicylate induce autophagy by virtue of their capacity to inhibit the acetyltransferase activity of EP300. While salicylate readily stimulates autophagic flux in control cells, it fails to further increase autophagy levels in EP300-deficient cells, as well as in cells in which endogenous EP300 has been replaced by salicylate-resistant EP300 mutants. Accordingly, the pro-autophagic activity of aspirin and salicylate on the nematode Caenorhabditis elegans is lost when the expression of the EP300 ortholog cpb-1 is reduced. Altogether, these findings identify aspirin as an evolutionary conserved CRM. [Display omitted] •The aspirin metabolite, salicylate, competitively inhibits EP300 acetyltransferase•EP300 inhibition is epistatic to autophagy induction by salicylate•Aspirin triggers cardioprotective mitophagy in mice and nematodes Pietrocola et al. show that the inhibition of the acetyltransferase EP300 is determinant for the autophagy-inducing effect of aspirin and its active metabolite salicylate. As a proof of the evolutionarily conserved nature of this mechanism, the authors demonstrate that aspirin triggers protective autophagy in mice and in the nematode C. elegans.</description><subject>Acetyl Coenzyme A - metabolism</subject><subject>acetylation</subject><subject>aging</subject><subject>Animals</subject><subject>Aspirin - pharmacology</subject><subject>autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - genetics</subject><subject>Caloric Restriction</subject><subject>Cell Line, Tumor</subject><subject>E1A-Associated p300 Protein - metabolism</subject><subject>EP300</subject><subject>Humans</subject><subject>longevity</subject><subject>Medicin och hälsovetenskap</subject><subject>metabolome</subject><subject>Metabolome - drug effects</subject><subject>Metabolomics</subject><subject>Mice, Inbred C57BL</subject><subject>salicylate</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kd9qXCEQxqWkNCHNG5SwL7Bb9ehRbwJhadqFQKC01-KfMXVzcjyom5K3j9uTJtmbyMgMOt9vxA-hLwSvCCb91-3KwZBhWlFM5ArTFuwDOqGUkCWhTBy9qY_RWSlb3FaPCVHsEzqmiilMBT9B_LJMMcdx8ROcmWLdDaZCWVyBqbvcihQWazOkHF3rKLXlGtP4GX0MZihw9pxP0e-rb7_WP5bXN98368vrpeNC1SWVwikVBBe9pR5zCzxYYqyiEoMAS7HxEAJ02FkuHfUeKKNG9SL0lIPqTtFm5vpktnrK8d7kR51M1P8OUr7VJtfoBtBWKgjStiEkMOidJB44caKXwYNgvrHUzCp_YdrZA9qUk9fP53dxv3UBTTohOtZ1pGkvZm1ruAfvYKzZDIeIg5sx_tG36UFzyaTksgHYDHA5lZIhvGgJ1ntH9VbPjuq9oxrTFqzJzt_OfRH99-_1YdBceIiQdXERRgc-ZnC1fVN8f8ITK2G2fQ</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Pietrocola, Federico</creator><creator>Castoldi, Francesca</creator><creator>Markaki, Maria</creator><creator>Lachkar, Sylvie</creator><creator>Chen, Guo</creator><creator>Enot, David P.</creator><creator>Durand, Sylvere</creator><creator>Bossut, Noelie</creator><creator>Tong, Mingming</creator><creator>Malik, Shoaib A.</creator><creator>Loos, Friedemann</creator><creator>Dupont, Nicolas</creator><creator>Mariño, Guillermo</creator><creator>Abdelkader, Nejma</creator><creator>Madeo, Frank</creator><creator>Maiuri, Maria Chiara</creator><creator>Kroemer, Romano</creator><creator>Codogno, Patrice</creator><creator>Sadoshima, Junichi</creator><creator>Tavernarakis, Nektarios</creator><creator>Kroemer, Guido</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20180227</creationdate><title>Aspirin Recapitulates Features of Caloric Restriction</title><author>Pietrocola, Federico ; Castoldi, Francesca ; Markaki, Maria ; Lachkar, Sylvie ; Chen, Guo ; Enot, David P. ; Durand, Sylvere ; Bossut, Noelie ; Tong, Mingming ; Malik, Shoaib A. ; Loos, Friedemann ; Dupont, Nicolas ; Mariño, Guillermo ; Abdelkader, Nejma ; Madeo, Frank ; Maiuri, Maria Chiara ; Kroemer, Romano ; Codogno, Patrice ; Sadoshima, Junichi ; Tavernarakis, Nektarios ; Kroemer, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetyl Coenzyme A - metabolism</topic><topic>acetylation</topic><topic>aging</topic><topic>Animals</topic><topic>Aspirin - pharmacology</topic><topic>autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - genetics</topic><topic>Caloric Restriction</topic><topic>Cell Line, Tumor</topic><topic>E1A-Associated p300 Protein - metabolism</topic><topic>EP300</topic><topic>Humans</topic><topic>longevity</topic><topic>Medicin och hälsovetenskap</topic><topic>metabolome</topic><topic>Metabolome - drug effects</topic><topic>Metabolomics</topic><topic>Mice, Inbred C57BL</topic><topic>salicylate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pietrocola, Federico</creatorcontrib><creatorcontrib>Castoldi, Francesca</creatorcontrib><creatorcontrib>Markaki, Maria</creatorcontrib><creatorcontrib>Lachkar, Sylvie</creatorcontrib><creatorcontrib>Chen, Guo</creatorcontrib><creatorcontrib>Enot, David P.</creatorcontrib><creatorcontrib>Durand, Sylvere</creatorcontrib><creatorcontrib>Bossut, Noelie</creatorcontrib><creatorcontrib>Tong, Mingming</creatorcontrib><creatorcontrib>Malik, Shoaib A.</creatorcontrib><creatorcontrib>Loos, Friedemann</creatorcontrib><creatorcontrib>Dupont, Nicolas</creatorcontrib><creatorcontrib>Mariño, Guillermo</creatorcontrib><creatorcontrib>Abdelkader, Nejma</creatorcontrib><creatorcontrib>Madeo, Frank</creatorcontrib><creatorcontrib>Maiuri, Maria Chiara</creatorcontrib><creatorcontrib>Kroemer, Romano</creatorcontrib><creatorcontrib>Codogno, Patrice</creatorcontrib><creatorcontrib>Sadoshima, Junichi</creatorcontrib><creatorcontrib>Tavernarakis, Nektarios</creatorcontrib><creatorcontrib>Kroemer, Guido</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pietrocola, Federico</au><au>Castoldi, Francesca</au><au>Markaki, Maria</au><au>Lachkar, Sylvie</au><au>Chen, Guo</au><au>Enot, David P.</au><au>Durand, Sylvere</au><au>Bossut, Noelie</au><au>Tong, Mingming</au><au>Malik, Shoaib A.</au><au>Loos, Friedemann</au><au>Dupont, Nicolas</au><au>Mariño, Guillermo</au><au>Abdelkader, Nejma</au><au>Madeo, Frank</au><au>Maiuri, Maria Chiara</au><au>Kroemer, Romano</au><au>Codogno, Patrice</au><au>Sadoshima, Junichi</au><au>Tavernarakis, Nektarios</au><au>Kroemer, Guido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aspirin Recapitulates Features of Caloric Restriction</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2018-02-27</date><risdate>2018</risdate><volume>22</volume><issue>9</issue><spage>2395</spage><epage>2407</epage><pages>2395-2407</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to reduce the overall levels of protein acetylation and to induce autophagy have been categorized as caloric restriction mimetics (CRMs). Here, we show that aspirin or its active metabolite salicylate induce autophagy by virtue of their capacity to inhibit the acetyltransferase activity of EP300. While salicylate readily stimulates autophagic flux in control cells, it fails to further increase autophagy levels in EP300-deficient cells, as well as in cells in which endogenous EP300 has been replaced by salicylate-resistant EP300 mutants. Accordingly, the pro-autophagic activity of aspirin and salicylate on the nematode Caenorhabditis elegans is lost when the expression of the EP300 ortholog cpb-1 is reduced. Altogether, these findings identify aspirin as an evolutionary conserved CRM. [Display omitted] •The aspirin metabolite, salicylate, competitively inhibits EP300 acetyltransferase•EP300 inhibition is epistatic to autophagy induction by salicylate•Aspirin triggers cardioprotective mitophagy in mice and nematodes Pietrocola et al. show that the inhibition of the acetyltransferase EP300 is determinant for the autophagy-inducing effect of aspirin and its active metabolite salicylate. As a proof of the evolutionarily conserved nature of this mechanism, the authors demonstrate that aspirin triggers protective autophagy in mice and in the nematode C. elegans.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29490275</pmid><doi>10.1016/j.celrep.2018.02.024</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2018-02, Vol.22 (9), p.2395-2407
issn 2211-1247
2211-1247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b89ef8b05b1f4e6c81de51c768fde74d
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Acetyl Coenzyme A - metabolism
acetylation
aging
Animals
Aspirin - pharmacology
autophagy
Autophagy - drug effects
Autophagy - genetics
Caloric Restriction
Cell Line, Tumor
E1A-Associated p300 Protein - metabolism
EP300
Humans
longevity
Medicin och hälsovetenskap
metabolome
Metabolome - drug effects
Metabolomics
Mice, Inbred C57BL
salicylate
title Aspirin Recapitulates Features of Caloric Restriction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aspirin%20Recapitulates%20Features%20of%20Caloric%20Restriction&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Pietrocola,%20Federico&rft.date=2018-02-27&rft.volume=22&rft.issue=9&rft.spage=2395&rft.epage=2407&rft.pages=2395-2407&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2018.02.024&rft_dat=%3Celsevier_doaj_%3ES221112471830192X%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c579t-287c99f7576b2d05be5fb1ab9280e7eb20adeffe30cb58c2dde242a967f625e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/29490275&rfr_iscdi=true