Loading…

Residual Stress‐Driven Non‐Euclidean Morphing in Origami Structures

Morphing origami has numerous potential engineering applications owing to its intrinsic morphing features from 2D planes to 3D surfaces. However, the current 1D hinge deformation‐driven transformation of foldable origami with rigid or slightly deformable panels cannot achieve a 3D complex and large...

Full description

Saved in:
Bibliographic Details
Published in:Advanced intelligent systems 2024-12, Vol.6 (12), p.n/a
Main Authors: Liang, Zihe, Chai, Sibo, Ding, Qinyun, Xiao, Kai, Liu, Ke, Ma, Jiayao, Ju, Jaehyung
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 12
container_start_page
container_title Advanced intelligent systems
container_volume 6
creator Liang, Zihe
Chai, Sibo
Ding, Qinyun
Xiao, Kai
Liu, Ke
Ma, Jiayao
Ju, Jaehyung
description Morphing origami has numerous potential engineering applications owing to its intrinsic morphing features from 2D planes to 3D surfaces. However, the current 1D hinge deformation‐driven transformation of foldable origami with rigid or slightly deformable panels cannot achieve a 3D complex and large curvilinear morphing. Moreover, most active origami structures use thin hinges with soft materials on their creases, thus resulting in a lower load capability. This study proposes a novel origami morphing method demonstrating large free‐form surface morphing, such as Euclidean to non‐Euclidean surface morphing with shape‐locking. Tensorial anisotropic stress in origami panels is embedded during the extrusion‐based 3D printing of shape memory polymers. The extrusion‐based 3D printing of isotropic SMPs can produce tensorial anisotropic stress in origami panels during fabrication, which can realize significant non‐Euclidean surface morphing with multiple deformation modes. The connecting topology of the origami unit cells influences the global morphing behavior owing to the interaction of the deformation of adjacent panels. Non‐Euclidean morphing integrated with 4D printing can provide multimodal shape locking at material and structural levels. This study proposes a novel origami morphing method with panel deformation‐driven thermal actuation. An extrusion‐based 3D printing of isotropic shape memory polymers can produce tensorial anisotropic stress in origami panels during fabrication. This can realize significant non‐Euclidean surface morphing with multiple deformation modes and shape locking. This method surpasses traditional hinge‐actuated origami, enabling expansive free‐form shaping and enhanced structural support.
doi_str_mv 10.1002/aisy.202400246
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b8c0fab1134f4410964ba4b2d902a7d2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b8c0fab1134f4410964ba4b2d902a7d2</doaj_id><sourcerecordid>3148353461</sourcerecordid><originalsourceid>FETCH-LOGICAL-d3086-4d1635f05aa33648f12025b8f9a984c1f9de068e68c908dac4d7f5e83c5409673</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKVXzpE4p_gVxzlWpZRKhUoUDpwsx4_iKk2KnYB64xP4Rr4El6KK0-6sZmZHA8AlgkMEIb6WLuyGGGIaAWUnoIcZhSnNWH76bz8HgxDWMHJQjiDOe2D6aILTnaySZetNCN-fXzfevZs6eWjqCCadqpw2sk7uG799dfUqcXWy8G4lN26v6VTbReEFOLOyCmbwN_vg-XbyNL5L54vpbDyap5pAzlKqESOZhZmUhDDKLYqZs5LbQhacKmQLbSDjhnFVQK6lojq3meFEZRQWLCd9MDv46kauxda7jfQ70Ugnfg-NXwnpW6cqI0quoJUlQoRaSlGU01LSEusCYplrHL2uDl5b37x1JrRi3XS-jvEFQZSTjFCGIqs4sD5cZXbHlwiKffFiX7w4Fi9Gs-XLEZEfA2F5og</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148353461</pqid></control><display><type>article</type><title>Residual Stress‐Driven Non‐Euclidean Morphing in Origami Structures</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Liang, Zihe ; Chai, Sibo ; Ding, Qinyun ; Xiao, Kai ; Liu, Ke ; Ma, Jiayao ; Ju, Jaehyung</creator><creatorcontrib>Liang, Zihe ; Chai, Sibo ; Ding, Qinyun ; Xiao, Kai ; Liu, Ke ; Ma, Jiayao ; Ju, Jaehyung</creatorcontrib><description>Morphing origami has numerous potential engineering applications owing to its intrinsic morphing features from 2D planes to 3D surfaces. However, the current 1D hinge deformation‐driven transformation of foldable origami with rigid or slightly deformable panels cannot achieve a 3D complex and large curvilinear morphing. Moreover, most active origami structures use thin hinges with soft materials on their creases, thus resulting in a lower load capability. This study proposes a novel origami morphing method demonstrating large free‐form surface morphing, such as Euclidean to non‐Euclidean surface morphing with shape‐locking. Tensorial anisotropic stress in origami panels is embedded during the extrusion‐based 3D printing of shape memory polymers. The extrusion‐based 3D printing of isotropic SMPs can produce tensorial anisotropic stress in origami panels during fabrication, which can realize significant non‐Euclidean surface morphing with multiple deformation modes. The connecting topology of the origami unit cells influences the global morphing behavior owing to the interaction of the deformation of adjacent panels. Non‐Euclidean morphing integrated with 4D printing can provide multimodal shape locking at material and structural levels. This study proposes a novel origami morphing method with panel deformation‐driven thermal actuation. An extrusion‐based 3D printing of isotropic shape memory polymers can produce tensorial anisotropic stress in origami panels during fabrication. This can realize significant non‐Euclidean surface morphing with multiple deformation modes and shape locking. This method surpasses traditional hinge‐actuated origami, enabling expansive free‐form shaping and enhanced structural support.</description><identifier>ISSN: 2640-4567</identifier><identifier>EISSN: 2640-4567</identifier><identifier>DOI: 10.1002/aisy.202400246</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>3-D printers ; 4D printing ; active origami ; Additive manufacturing ; Deformation ; Euclidean space ; Extrusion ; Formability ; instabilities ; Locking ; Martensitic transformations ; Morphing ; panel deformations ; Panels ; Residual stress ; Shape memory ; shape memory effects ; Three dimensional printing ; Topology</subject><ispartof>Advanced intelligent systems, 2024-12, Vol.6 (12), p.n/a</ispartof><rights>2024 The Author(s). Advanced Intelligent Systems published by Wiley‐VCH GmbH</rights><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6442-2972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3148353461/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3148353461?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,44590,46052,46476,75126</link.rule.ids></links><search><creatorcontrib>Liang, Zihe</creatorcontrib><creatorcontrib>Chai, Sibo</creatorcontrib><creatorcontrib>Ding, Qinyun</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><creatorcontrib>Liu, Ke</creatorcontrib><creatorcontrib>Ma, Jiayao</creatorcontrib><creatorcontrib>Ju, Jaehyung</creatorcontrib><title>Residual Stress‐Driven Non‐Euclidean Morphing in Origami Structures</title><title>Advanced intelligent systems</title><description>Morphing origami has numerous potential engineering applications owing to its intrinsic morphing features from 2D planes to 3D surfaces. However, the current 1D hinge deformation‐driven transformation of foldable origami with rigid or slightly deformable panels cannot achieve a 3D complex and large curvilinear morphing. Moreover, most active origami structures use thin hinges with soft materials on their creases, thus resulting in a lower load capability. This study proposes a novel origami morphing method demonstrating large free‐form surface morphing, such as Euclidean to non‐Euclidean surface morphing with shape‐locking. Tensorial anisotropic stress in origami panels is embedded during the extrusion‐based 3D printing of shape memory polymers. The extrusion‐based 3D printing of isotropic SMPs can produce tensorial anisotropic stress in origami panels during fabrication, which can realize significant non‐Euclidean surface morphing with multiple deformation modes. The connecting topology of the origami unit cells influences the global morphing behavior owing to the interaction of the deformation of adjacent panels. Non‐Euclidean morphing integrated with 4D printing can provide multimodal shape locking at material and structural levels. This study proposes a novel origami morphing method with panel deformation‐driven thermal actuation. An extrusion‐based 3D printing of isotropic shape memory polymers can produce tensorial anisotropic stress in origami panels during fabrication. This can realize significant non‐Euclidean surface morphing with multiple deformation modes and shape locking. This method surpasses traditional hinge‐actuated origami, enabling expansive free‐form shaping and enhanced structural support.</description><subject>3-D printers</subject><subject>4D printing</subject><subject>active origami</subject><subject>Additive manufacturing</subject><subject>Deformation</subject><subject>Euclidean space</subject><subject>Extrusion</subject><subject>Formability</subject><subject>instabilities</subject><subject>Locking</subject><subject>Martensitic transformations</subject><subject>Morphing</subject><subject>panel deformations</subject><subject>Panels</subject><subject>Residual stress</subject><subject>Shape memory</subject><subject>shape memory effects</subject><subject>Three dimensional printing</subject><subject>Topology</subject><issn>2640-4567</issn><issn>2640-4567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVKVXzpE4p_gVxzlWpZRKhUoUDpwsx4_iKk2KnYB64xP4Rr4El6KK0-6sZmZHA8AlgkMEIb6WLuyGGGIaAWUnoIcZhSnNWH76bz8HgxDWMHJQjiDOe2D6aILTnaySZetNCN-fXzfevZs6eWjqCCadqpw2sk7uG799dfUqcXWy8G4lN26v6VTbReEFOLOyCmbwN_vg-XbyNL5L54vpbDyap5pAzlKqESOZhZmUhDDKLYqZs5LbQhacKmQLbSDjhnFVQK6lojq3meFEZRQWLCd9MDv46kauxda7jfQ70Ugnfg-NXwnpW6cqI0quoJUlQoRaSlGU01LSEusCYplrHL2uDl5b37x1JrRi3XS-jvEFQZSTjFCGIqs4sD5cZXbHlwiKffFiX7w4Fi9Gs-XLEZEfA2F5og</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Liang, Zihe</creator><creator>Chai, Sibo</creator><creator>Ding, Qinyun</creator><creator>Xiao, Kai</creator><creator>Liu, Ke</creator><creator>Ma, Jiayao</creator><creator>Ju, Jaehyung</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6442-2972</orcidid></search><sort><creationdate>202412</creationdate><title>Residual Stress‐Driven Non‐Euclidean Morphing in Origami Structures</title><author>Liang, Zihe ; Chai, Sibo ; Ding, Qinyun ; Xiao, Kai ; Liu, Ke ; Ma, Jiayao ; Ju, Jaehyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d3086-4d1635f05aa33648f12025b8f9a984c1f9de068e68c908dac4d7f5e83c5409673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>4D printing</topic><topic>active origami</topic><topic>Additive manufacturing</topic><topic>Deformation</topic><topic>Euclidean space</topic><topic>Extrusion</topic><topic>Formability</topic><topic>instabilities</topic><topic>Locking</topic><topic>Martensitic transformations</topic><topic>Morphing</topic><topic>panel deformations</topic><topic>Panels</topic><topic>Residual stress</topic><topic>Shape memory</topic><topic>shape memory effects</topic><topic>Three dimensional printing</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Zihe</creatorcontrib><creatorcontrib>Chai, Sibo</creatorcontrib><creatorcontrib>Ding, Qinyun</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><creatorcontrib>Liu, Ke</creatorcontrib><creatorcontrib>Ma, Jiayao</creatorcontrib><creatorcontrib>Ju, Jaehyung</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Archive</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Zihe</au><au>Chai, Sibo</au><au>Ding, Qinyun</au><au>Xiao, Kai</au><au>Liu, Ke</au><au>Ma, Jiayao</au><au>Ju, Jaehyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual Stress‐Driven Non‐Euclidean Morphing in Origami Structures</atitle><jtitle>Advanced intelligent systems</jtitle><date>2024-12</date><risdate>2024</risdate><volume>6</volume><issue>12</issue><epage>n/a</epage><issn>2640-4567</issn><eissn>2640-4567</eissn><abstract>Morphing origami has numerous potential engineering applications owing to its intrinsic morphing features from 2D planes to 3D surfaces. However, the current 1D hinge deformation‐driven transformation of foldable origami with rigid or slightly deformable panels cannot achieve a 3D complex and large curvilinear morphing. Moreover, most active origami structures use thin hinges with soft materials on their creases, thus resulting in a lower load capability. This study proposes a novel origami morphing method demonstrating large free‐form surface morphing, such as Euclidean to non‐Euclidean surface morphing with shape‐locking. Tensorial anisotropic stress in origami panels is embedded during the extrusion‐based 3D printing of shape memory polymers. The extrusion‐based 3D printing of isotropic SMPs can produce tensorial anisotropic stress in origami panels during fabrication, which can realize significant non‐Euclidean surface morphing with multiple deformation modes. The connecting topology of the origami unit cells influences the global morphing behavior owing to the interaction of the deformation of adjacent panels. Non‐Euclidean morphing integrated with 4D printing can provide multimodal shape locking at material and structural levels. This study proposes a novel origami morphing method with panel deformation‐driven thermal actuation. An extrusion‐based 3D printing of isotropic shape memory polymers can produce tensorial anisotropic stress in origami panels during fabrication. This can realize significant non‐Euclidean surface morphing with multiple deformation modes and shape locking. This method surpasses traditional hinge‐actuated origami, enabling expansive free‐form shaping and enhanced structural support.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aisy.202400246</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6442-2972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2640-4567
ispartof Advanced intelligent systems, 2024-12, Vol.6 (12), p.n/a
issn 2640-4567
2640-4567
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b8c0fab1134f4410964ba4b2d902a7d2
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects 3-D printers
4D printing
active origami
Additive manufacturing
Deformation
Euclidean space
Extrusion
Formability
instabilities
Locking
Martensitic transformations
Morphing
panel deformations
Panels
Residual stress
Shape memory
shape memory effects
Three dimensional printing
Topology
title Residual Stress‐Driven Non‐Euclidean Morphing in Origami Structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20Stress%E2%80%90Driven%20Non%E2%80%90Euclidean%20Morphing%20in%20Origami%20Structures&rft.jtitle=Advanced%20intelligent%20systems&rft.au=Liang,%20Zihe&rft.date=2024-12&rft.volume=6&rft.issue=12&rft.epage=n/a&rft.issn=2640-4567&rft.eissn=2640-4567&rft_id=info:doi/10.1002/aisy.202400246&rft_dat=%3Cproquest_doaj_%3E3148353461%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d3086-4d1635f05aa33648f12025b8f9a984c1f9de068e68c908dac4d7f5e83c5409673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148353461&rft_id=info:pmid/&rfr_iscdi=true