Loading…

The Brouwer invariance theorems in reverse mathematics

In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing that (some forms of) the Brouwer invariance theorems are equivalent to...

Full description

Saved in:
Bibliographic Details
Published in:Forum of mathematics. Sigma 2020, Vol.8, Article e51
Main Author: Kihara, Takayuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-ddef81355a665a5d8319028f3acadc88f5274e6968aa00a68ee4c17ec323973b3
cites cdi_FETCH-LOGICAL-c468t-ddef81355a665a5d8319028f3acadc88f5274e6968aa00a68ee4c17ec323973b3
container_end_page
container_issue
container_start_page
container_title Forum of mathematics. Sigma
container_volume 8
creator Kihara, Takayuki
description In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing that (some forms of) the Brouwer invariance theorems are equivalent to the weak König’s lemma over the base system ${\sf RCA}_0$ . In particular, there exists an explicit algorithm which, whenever the weak König’s lemma is false, constructs a topological embedding of $\mathbb {R}^4$ into $\mathbb {R}^3$ .
doi_str_mv 10.1017/fms.2020.52
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b8c5bf65f9a347a5ad16af8147098b51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_fms_2020_52</cupid><doaj_id>oai_doaj_org_article_b8c5bf65f9a347a5ad16af8147098b51</doaj_id><sourcerecordid>2459969327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-ddef81355a665a5d8319028f3acadc88f5274e6968aa00a68ee4c17ec323973b3</originalsourceid><addsrcrecordid>eNptkEtLA0EQhAdRUGJO_oEFj7JxHjuvowYfgYCXeB56Z3uSDdmsziQR_70TE9SDl-6m-KguipArRkeMMn0bujTilNOR5CfkglNJS0ltdfrnPifDlJaUUsa4llpfEDVbYHEf--0HxqJd7yC2sPZYbBbYR-xS1oqIO4wJiw6ymkfr0yU5C7BKODzuAXl9fJiNn8vpy9NkfDctfaXMpmwaDIYJKUEpCbIxglnKTRDgofHGBMl1hcoqA0ApKINYeabRCy6sFrUYkMnBt-lh6d5i20H8dD207lvo49xBzIFW6GrjZR2UDBZEpUFCwxTk75Wm1tSSZa_rg9db7N-3mDZu2W_jOsd3vJLWKiu4ztTNgfKxTyli-PnKqNv37HLPbt-zkzzT5ZGGro5tM8df0__4LxpWfco</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459969327</pqid></control><display><type>article</type><title>The Brouwer invariance theorems in reverse mathematics</title><source>Cambridge Journals Online</source><creator>Kihara, Takayuki</creator><creatorcontrib>Kihara, Takayuki</creatorcontrib><description>In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing that (some forms of) the Brouwer invariance theorems are equivalent to the weak König’s lemma over the base system ${\sf RCA}_0$ . In particular, there exists an explicit algorithm which, whenever the weak König’s lemma is false, constructs a topological embedding of $\mathbb {R}^4$ into $\mathbb {R}^3$ .</description><identifier>ISSN: 2050-5094</identifier><identifier>EISSN: 2050-5094</identifier><identifier>DOI: 10.1017/fms.2020.52</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>03B30 ; 54F45 ; 55M10 ; Algorithms ; Foundations ; Invariance ; Mathematical analysis ; Theorems</subject><ispartof>Forum of mathematics. Sigma, 2020, Vol.8, Article e51</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><rights>2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-ddef81355a665a5d8319028f3acadc88f5274e6968aa00a68ee4c17ec323973b3</citedby><cites>FETCH-LOGICAL-c468t-ddef81355a665a5d8319028f3acadc88f5274e6968aa00a68ee4c17ec323973b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S2050509420000523/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Kihara, Takayuki</creatorcontrib><title>The Brouwer invariance theorems in reverse mathematics</title><title>Forum of mathematics. Sigma</title><addtitle>Forum of Mathematics, Sigma</addtitle><description>In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing that (some forms of) the Brouwer invariance theorems are equivalent to the weak König’s lemma over the base system ${\sf RCA}_0$ . In particular, there exists an explicit algorithm which, whenever the weak König’s lemma is false, constructs a topological embedding of $\mathbb {R}^4$ into $\mathbb {R}^3$ .</description><subject>03B30</subject><subject>54F45</subject><subject>55M10</subject><subject>Algorithms</subject><subject>Foundations</subject><subject>Invariance</subject><subject>Mathematical analysis</subject><subject>Theorems</subject><issn>2050-5094</issn><issn>2050-5094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkEtLA0EQhAdRUGJO_oEFj7JxHjuvowYfgYCXeB56Z3uSDdmsziQR_70TE9SDl-6m-KguipArRkeMMn0bujTilNOR5CfkglNJS0ltdfrnPifDlJaUUsa4llpfEDVbYHEf--0HxqJd7yC2sPZYbBbYR-xS1oqIO4wJiw6ymkfr0yU5C7BKODzuAXl9fJiNn8vpy9NkfDctfaXMpmwaDIYJKUEpCbIxglnKTRDgofHGBMl1hcoqA0ApKINYeabRCy6sFrUYkMnBt-lh6d5i20H8dD207lvo49xBzIFW6GrjZR2UDBZEpUFCwxTk75Wm1tSSZa_rg9db7N-3mDZu2W_jOsd3vJLWKiu4ztTNgfKxTyli-PnKqNv37HLPbt-zkzzT5ZGGro5tM8df0__4LxpWfco</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kihara, Takayuki</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>The Brouwer invariance theorems in reverse mathematics</title><author>Kihara, Takayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-ddef81355a665a5d8319028f3acadc88f5274e6968aa00a68ee4c17ec323973b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>03B30</topic><topic>54F45</topic><topic>55M10</topic><topic>Algorithms</topic><topic>Foundations</topic><topic>Invariance</topic><topic>Mathematical analysis</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kihara, Takayuki</creatorcontrib><collection>Cambridge Journals website</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Forum of mathematics. Sigma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kihara, Takayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Brouwer invariance theorems in reverse mathematics</atitle><jtitle>Forum of mathematics. Sigma</jtitle><addtitle>Forum of Mathematics, Sigma</addtitle><date>2020</date><risdate>2020</risdate><volume>8</volume><artnum>e51</artnum><issn>2050-5094</issn><eissn>2050-5094</eissn><abstract>In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing that (some forms of) the Brouwer invariance theorems are equivalent to the weak König’s lemma over the base system ${\sf RCA}_0$ . In particular, there exists an explicit algorithm which, whenever the weak König’s lemma is false, constructs a topological embedding of $\mathbb {R}^4$ into $\mathbb {R}^3$ .</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/fms.2020.52</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-5094
ispartof Forum of mathematics. Sigma, 2020, Vol.8, Article e51
issn 2050-5094
2050-5094
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b8c5bf65f9a347a5ad16af8147098b51
source Cambridge Journals Online
subjects 03B30
54F45
55M10
Algorithms
Foundations
Invariance
Mathematical analysis
Theorems
title The Brouwer invariance theorems in reverse mathematics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Brouwer%20invariance%20theorems%20in%20reverse%20mathematics&rft.jtitle=Forum%20of%20mathematics.%20Sigma&rft.au=Kihara,%20Takayuki&rft.date=2020&rft.volume=8&rft.artnum=e51&rft.issn=2050-5094&rft.eissn=2050-5094&rft_id=info:doi/10.1017/fms.2020.52&rft_dat=%3Cproquest_doaj_%3E2459969327%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-ddef81355a665a5d8319028f3acadc88f5274e6968aa00a68ee4c17ec323973b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2459969327&rft_id=info:pmid/&rft_cupid=10_1017_fms_2020_52&rfr_iscdi=true