Loading…
Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities
Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large sca...
Saved in:
Published in: | eLife 2021-09, Vol.10 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 10 |
creator | Panigrahi, Swapnesh Murat, Dorothée Le Gall, Antoine Martineau, Eugénie Goldlust, Kelly Fiche, Jean-Bernard Rombouts, Sara Nöllmann, Marcelo Espinosa, Leon Mignot, Tâm |
description | Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology. |
doi_str_mv | 10.7554/eLife.65151 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b911c8ea9855474b86e9b6372224a944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677084478</galeid><doaj_id>oai_doaj_org_article_b911c8ea9855474b86e9b6372224a944</doaj_id><sourcerecordid>A677084478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3</originalsourceid><addsrcrecordid>eNptkk1r3DAQhk1paUKaU_-AoJeGdLeSbVnWpbCEtlnYUugH9CZkeWRrsa2tJIf033d2N5RsqHSQGD3zauZlsuw1o0vBefkeNs7CsuKMs2fZeU45XdC6_PX80f0su4xxS3GJsq6ZfJmdFWUpa15X59ndFxedeUc06WCCoAfSAuzIADpMbuoWjY7QkhFS71tifSCpB9K7rl-kPvi563dzIgaGgUToRpiSTs5PxFti_Lgb4J402iQIDpUxMs6TSw7iq-yF1UOEy4fzIvv56eOPm9vF5uvn9c1qszCc5myhNS0oZSKvjLWF5C2T0EijW66LgjNWtJRKSwveUssLWlkGdWsFSCukzjHlIlsfdVuvt2oX3KjDH-W1U4eAD53SITkzgGokY6YGjcbwUpRNXYFsqkLkeV5qWZao9eGotZubEVqDzaJfJ6KnL5PrVefvVF2KumQUBa6OAv2TtNvVRu1j2KwU2NUdQ_btw2fB_54hJjW6uPdZT-DnqHIuGOWc8grRN0_QrZ_DhLYiJTmWX8lHVKexWTdZjzWavahaVULgoGCVSC3_Q-FuYXTGT2Adxk8Srk4SkElwnzo9x6jW37-dstdH1gQfYwD7zwRG1X6a1WGa1WGai7-6-ePy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595224696</pqid></control><display><type>article</type><title>Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Panigrahi, Swapnesh ; Murat, Dorothée ; Le Gall, Antoine ; Martineau, Eugénie ; Goldlust, Kelly ; Fiche, Jean-Bernard ; Rombouts, Sara ; Nöllmann, Marcelo ; Espinosa, Leon ; Mignot, Tâm</creator><creatorcontrib>Panigrahi, Swapnesh ; Murat, Dorothée ; Le Gall, Antoine ; Martineau, Eugénie ; Goldlust, Kelly ; Fiche, Jean-Bernard ; Rombouts, Sara ; Nöllmann, Marcelo ; Espinosa, Leon ; Mignot, Tâm</creatorcontrib><description>Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.65151</identifier><identifier>PMID: 34498586</identifier><language>eng</language><publisher>Cambridge: eLife Science Publications, Ltd</publisher><subject>Animal behavior ; Bacteria ; Bacteriology ; Biofilms ; Cells ; Computational and Systems Biology ; Deep learning ; E coli ; Eigenvalues ; image analysis ; Life Sciences ; Methods ; Microbiology and Infectious Disease ; Microbiology and Parasitology ; Microbiomes ; Microscopy ; myxococcus xanthus ; Noise ; Predator-prey interactions ; Prey ; Segmentation ; Semantics ; Tools and Resources</subject><ispartof>eLife, 2021-09, Vol.10</ispartof><rights>COPYRIGHT 2021 eLife Science Publications, Ltd.</rights><rights>2021, Panigrahi et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021, Panigrahi et al 2021 Panigrahi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3</citedby><cites>FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3</cites><orcidid>0000-0001-5809-9267 ; 0000-0002-1923-2069 ; 0000-0003-4338-9063 ; 0009-0002-2811-1004 ; 0000-0003-3339-2349 ; 0000-0002-5933-7033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2595224696/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2595224696?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-03097113$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Panigrahi, Swapnesh</creatorcontrib><creatorcontrib>Murat, Dorothée</creatorcontrib><creatorcontrib>Le Gall, Antoine</creatorcontrib><creatorcontrib>Martineau, Eugénie</creatorcontrib><creatorcontrib>Goldlust, Kelly</creatorcontrib><creatorcontrib>Fiche, Jean-Bernard</creatorcontrib><creatorcontrib>Rombouts, Sara</creatorcontrib><creatorcontrib>Nöllmann, Marcelo</creatorcontrib><creatorcontrib>Espinosa, Leon</creatorcontrib><creatorcontrib>Mignot, Tâm</creatorcontrib><title>Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities</title><title>eLife</title><description>Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.</description><subject>Animal behavior</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Biofilms</subject><subject>Cells</subject><subject>Computational and Systems Biology</subject><subject>Deep learning</subject><subject>E coli</subject><subject>Eigenvalues</subject><subject>image analysis</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microbiology and Infectious Disease</subject><subject>Microbiology and Parasitology</subject><subject>Microbiomes</subject><subject>Microscopy</subject><subject>myxococcus xanthus</subject><subject>Noise</subject><subject>Predator-prey interactions</subject><subject>Prey</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Tools and Resources</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1r3DAQhk1paUKaU_-AoJeGdLeSbVnWpbCEtlnYUugH9CZkeWRrsa2tJIf033d2N5RsqHSQGD3zauZlsuw1o0vBefkeNs7CsuKMs2fZeU45XdC6_PX80f0su4xxS3GJsq6ZfJmdFWUpa15X59ndFxedeUc06WCCoAfSAuzIADpMbuoWjY7QkhFS71tifSCpB9K7rl-kPvi563dzIgaGgUToRpiSTs5PxFti_Lgb4J402iQIDpUxMs6TSw7iq-yF1UOEy4fzIvv56eOPm9vF5uvn9c1qszCc5myhNS0oZSKvjLWF5C2T0EijW66LgjNWtJRKSwveUssLWlkGdWsFSCukzjHlIlsfdVuvt2oX3KjDH-W1U4eAD53SITkzgGokY6YGjcbwUpRNXYFsqkLkeV5qWZao9eGotZubEVqDzaJfJ6KnL5PrVefvVF2KumQUBa6OAv2TtNvVRu1j2KwU2NUdQ_btw2fB_54hJjW6uPdZT-DnqHIuGOWc8grRN0_QrZ_DhLYiJTmWX8lHVKexWTdZjzWavahaVULgoGCVSC3_Q-FuYXTGT2Adxk8Srk4SkElwnzo9x6jW37-dstdH1gQfYwD7zwRG1X6a1WGa1WGai7-6-ePy</recordid><startdate>20210909</startdate><enddate>20210909</enddate><creator>Panigrahi, Swapnesh</creator><creator>Murat, Dorothée</creator><creator>Le Gall, Antoine</creator><creator>Martineau, Eugénie</creator><creator>Goldlust, Kelly</creator><creator>Fiche, Jean-Bernard</creator><creator>Rombouts, Sara</creator><creator>Nöllmann, Marcelo</creator><creator>Espinosa, Leon</creator><creator>Mignot, Tâm</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publication</general><general>eLife Sciences Publications, Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5809-9267</orcidid><orcidid>https://orcid.org/0000-0002-1923-2069</orcidid><orcidid>https://orcid.org/0000-0003-4338-9063</orcidid><orcidid>https://orcid.org/0009-0002-2811-1004</orcidid><orcidid>https://orcid.org/0000-0003-3339-2349</orcidid><orcidid>https://orcid.org/0000-0002-5933-7033</orcidid></search><sort><creationdate>20210909</creationdate><title>Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities</title><author>Panigrahi, Swapnesh ; Murat, Dorothée ; Le Gall, Antoine ; Martineau, Eugénie ; Goldlust, Kelly ; Fiche, Jean-Bernard ; Rombouts, Sara ; Nöllmann, Marcelo ; Espinosa, Leon ; Mignot, Tâm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal behavior</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Biofilms</topic><topic>Cells</topic><topic>Computational and Systems Biology</topic><topic>Deep learning</topic><topic>E coli</topic><topic>Eigenvalues</topic><topic>image analysis</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microbiology and Infectious Disease</topic><topic>Microbiology and Parasitology</topic><topic>Microbiomes</topic><topic>Microscopy</topic><topic>myxococcus xanthus</topic><topic>Noise</topic><topic>Predator-prey interactions</topic><topic>Prey</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Tools and Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panigrahi, Swapnesh</creatorcontrib><creatorcontrib>Murat, Dorothée</creatorcontrib><creatorcontrib>Le Gall, Antoine</creatorcontrib><creatorcontrib>Martineau, Eugénie</creatorcontrib><creatorcontrib>Goldlust, Kelly</creatorcontrib><creatorcontrib>Fiche, Jean-Bernard</creatorcontrib><creatorcontrib>Rombouts, Sara</creatorcontrib><creatorcontrib>Nöllmann, Marcelo</creatorcontrib><creatorcontrib>Espinosa, Leon</creatorcontrib><creatorcontrib>Mignot, Tâm</creatorcontrib><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panigrahi, Swapnesh</au><au>Murat, Dorothée</au><au>Le Gall, Antoine</au><au>Martineau, Eugénie</au><au>Goldlust, Kelly</au><au>Fiche, Jean-Bernard</au><au>Rombouts, Sara</au><au>Nöllmann, Marcelo</au><au>Espinosa, Leon</au><au>Mignot, Tâm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities</atitle><jtitle>eLife</jtitle><date>2021-09-09</date><risdate>2021</risdate><volume>10</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.</abstract><cop>Cambridge</cop><pub>eLife Science Publications, Ltd</pub><pmid>34498586</pmid><doi>10.7554/eLife.65151</doi><orcidid>https://orcid.org/0000-0001-5809-9267</orcidid><orcidid>https://orcid.org/0000-0002-1923-2069</orcidid><orcidid>https://orcid.org/0000-0003-4338-9063</orcidid><orcidid>https://orcid.org/0009-0002-2811-1004</orcidid><orcidid>https://orcid.org/0000-0003-3339-2349</orcidid><orcidid>https://orcid.org/0000-0002-5933-7033</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2021-09, Vol.10 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b911c8ea9855474b86e9b6372224a944 |
source | Publicly Available Content Database; PubMed Central |
subjects | Animal behavior Bacteria Bacteriology Biofilms Cells Computational and Systems Biology Deep learning E coli Eigenvalues image analysis Life Sciences Methods Microbiology and Infectious Disease Microbiology and Parasitology Microbiomes Microscopy myxococcus xanthus Noise Predator-prey interactions Prey Segmentation Semantics Tools and Resources |
title | Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Misic,%20a%20general%20deep%20learning-based%20method%20for%20the%20high-throughput%20cell%20segmentation%20of%20complex%20bacterial%20communities&rft.jtitle=eLife&rft.au=Panigrahi,%20Swapnesh&rft.date=2021-09-09&rft.volume=10&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.65151&rft_dat=%3Cgale_doaj_%3EA677084478%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595224696&rft_id=info:pmid/34498586&rft_galeid=A677084478&rfr_iscdi=true |