Loading…

Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities

Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large sca...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2021-09, Vol.10
Main Authors: Panigrahi, Swapnesh, Murat, Dorothée, Le Gall, Antoine, Martineau, Eugénie, Goldlust, Kelly, Fiche, Jean-Bernard, Rombouts, Sara, Nöllmann, Marcelo, Espinosa, Leon, Mignot, Tâm
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3
cites cdi_FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 10
creator Panigrahi, Swapnesh
Murat, Dorothée
Le Gall, Antoine
Martineau, Eugénie
Goldlust, Kelly
Fiche, Jean-Bernard
Rombouts, Sara
Nöllmann, Marcelo
Espinosa, Leon
Mignot, Tâm
description Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.
doi_str_mv 10.7554/eLife.65151
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b911c8ea9855474b86e9b6372224a944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677084478</galeid><doaj_id>oai_doaj_org_article_b911c8ea9855474b86e9b6372224a944</doaj_id><sourcerecordid>A677084478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3</originalsourceid><addsrcrecordid>eNptkk1r3DAQhk1paUKaU_-AoJeGdLeSbVnWpbCEtlnYUugH9CZkeWRrsa2tJIf033d2N5RsqHSQGD3zauZlsuw1o0vBefkeNs7CsuKMs2fZeU45XdC6_PX80f0su4xxS3GJsq6ZfJmdFWUpa15X59ndFxedeUc06WCCoAfSAuzIADpMbuoWjY7QkhFS71tifSCpB9K7rl-kPvi563dzIgaGgUToRpiSTs5PxFti_Lgb4J402iQIDpUxMs6TSw7iq-yF1UOEy4fzIvv56eOPm9vF5uvn9c1qszCc5myhNS0oZSKvjLWF5C2T0EijW66LgjNWtJRKSwveUssLWlkGdWsFSCukzjHlIlsfdVuvt2oX3KjDH-W1U4eAD53SITkzgGokY6YGjcbwUpRNXYFsqkLkeV5qWZao9eGotZubEVqDzaJfJ6KnL5PrVefvVF2KumQUBa6OAv2TtNvVRu1j2KwU2NUdQ_btw2fB_54hJjW6uPdZT-DnqHIuGOWc8grRN0_QrZ_DhLYiJTmWX8lHVKexWTdZjzWavahaVULgoGCVSC3_Q-FuYXTGT2Adxk8Srk4SkElwnzo9x6jW37-dstdH1gQfYwD7zwRG1X6a1WGa1WGai7-6-ePy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595224696</pqid></control><display><type>article</type><title>Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Panigrahi, Swapnesh ; Murat, Dorothée ; Le Gall, Antoine ; Martineau, Eugénie ; Goldlust, Kelly ; Fiche, Jean-Bernard ; Rombouts, Sara ; Nöllmann, Marcelo ; Espinosa, Leon ; Mignot, Tâm</creator><creatorcontrib>Panigrahi, Swapnesh ; Murat, Dorothée ; Le Gall, Antoine ; Martineau, Eugénie ; Goldlust, Kelly ; Fiche, Jean-Bernard ; Rombouts, Sara ; Nöllmann, Marcelo ; Espinosa, Leon ; Mignot, Tâm</creatorcontrib><description>Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.65151</identifier><identifier>PMID: 34498586</identifier><language>eng</language><publisher>Cambridge: eLife Science Publications, Ltd</publisher><subject>Animal behavior ; Bacteria ; Bacteriology ; Biofilms ; Cells ; Computational and Systems Biology ; Deep learning ; E coli ; Eigenvalues ; image analysis ; Life Sciences ; Methods ; Microbiology and Infectious Disease ; Microbiology and Parasitology ; Microbiomes ; Microscopy ; myxococcus xanthus ; Noise ; Predator-prey interactions ; Prey ; Segmentation ; Semantics ; Tools and Resources</subject><ispartof>eLife, 2021-09, Vol.10</ispartof><rights>COPYRIGHT 2021 eLife Science Publications, Ltd.</rights><rights>2021, Panigrahi et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021, Panigrahi et al 2021 Panigrahi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3</citedby><cites>FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3</cites><orcidid>0000-0001-5809-9267 ; 0000-0002-1923-2069 ; 0000-0003-4338-9063 ; 0009-0002-2811-1004 ; 0000-0003-3339-2349 ; 0000-0002-5933-7033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2595224696/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2595224696?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-03097113$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Panigrahi, Swapnesh</creatorcontrib><creatorcontrib>Murat, Dorothée</creatorcontrib><creatorcontrib>Le Gall, Antoine</creatorcontrib><creatorcontrib>Martineau, Eugénie</creatorcontrib><creatorcontrib>Goldlust, Kelly</creatorcontrib><creatorcontrib>Fiche, Jean-Bernard</creatorcontrib><creatorcontrib>Rombouts, Sara</creatorcontrib><creatorcontrib>Nöllmann, Marcelo</creatorcontrib><creatorcontrib>Espinosa, Leon</creatorcontrib><creatorcontrib>Mignot, Tâm</creatorcontrib><title>Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities</title><title>eLife</title><description>Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.</description><subject>Animal behavior</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Biofilms</subject><subject>Cells</subject><subject>Computational and Systems Biology</subject><subject>Deep learning</subject><subject>E coli</subject><subject>Eigenvalues</subject><subject>image analysis</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microbiology and Infectious Disease</subject><subject>Microbiology and Parasitology</subject><subject>Microbiomes</subject><subject>Microscopy</subject><subject>myxococcus xanthus</subject><subject>Noise</subject><subject>Predator-prey interactions</subject><subject>Prey</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Tools and Resources</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1r3DAQhk1paUKaU_-AoJeGdLeSbVnWpbCEtlnYUugH9CZkeWRrsa2tJIf033d2N5RsqHSQGD3zauZlsuw1o0vBefkeNs7CsuKMs2fZeU45XdC6_PX80f0su4xxS3GJsq6ZfJmdFWUpa15X59ndFxedeUc06WCCoAfSAuzIADpMbuoWjY7QkhFS71tifSCpB9K7rl-kPvi563dzIgaGgUToRpiSTs5PxFti_Lgb4J402iQIDpUxMs6TSw7iq-yF1UOEy4fzIvv56eOPm9vF5uvn9c1qszCc5myhNS0oZSKvjLWF5C2T0EijW66LgjNWtJRKSwveUssLWlkGdWsFSCukzjHlIlsfdVuvt2oX3KjDH-W1U4eAD53SITkzgGokY6YGjcbwUpRNXYFsqkLkeV5qWZao9eGotZubEVqDzaJfJ6KnL5PrVefvVF2KumQUBa6OAv2TtNvVRu1j2KwU2NUdQ_btw2fB_54hJjW6uPdZT-DnqHIuGOWc8grRN0_QrZ_DhLYiJTmWX8lHVKexWTdZjzWavahaVULgoGCVSC3_Q-FuYXTGT2Adxk8Srk4SkElwnzo9x6jW37-dstdH1gQfYwD7zwRG1X6a1WGa1WGai7-6-ePy</recordid><startdate>20210909</startdate><enddate>20210909</enddate><creator>Panigrahi, Swapnesh</creator><creator>Murat, Dorothée</creator><creator>Le Gall, Antoine</creator><creator>Martineau, Eugénie</creator><creator>Goldlust, Kelly</creator><creator>Fiche, Jean-Bernard</creator><creator>Rombouts, Sara</creator><creator>Nöllmann, Marcelo</creator><creator>Espinosa, Leon</creator><creator>Mignot, Tâm</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publication</general><general>eLife Sciences Publications, Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5809-9267</orcidid><orcidid>https://orcid.org/0000-0002-1923-2069</orcidid><orcidid>https://orcid.org/0000-0003-4338-9063</orcidid><orcidid>https://orcid.org/0009-0002-2811-1004</orcidid><orcidid>https://orcid.org/0000-0003-3339-2349</orcidid><orcidid>https://orcid.org/0000-0002-5933-7033</orcidid></search><sort><creationdate>20210909</creationdate><title>Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities</title><author>Panigrahi, Swapnesh ; Murat, Dorothée ; Le Gall, Antoine ; Martineau, Eugénie ; Goldlust, Kelly ; Fiche, Jean-Bernard ; Rombouts, Sara ; Nöllmann, Marcelo ; Espinosa, Leon ; Mignot, Tâm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal behavior</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Biofilms</topic><topic>Cells</topic><topic>Computational and Systems Biology</topic><topic>Deep learning</topic><topic>E coli</topic><topic>Eigenvalues</topic><topic>image analysis</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microbiology and Infectious Disease</topic><topic>Microbiology and Parasitology</topic><topic>Microbiomes</topic><topic>Microscopy</topic><topic>myxococcus xanthus</topic><topic>Noise</topic><topic>Predator-prey interactions</topic><topic>Prey</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Tools and Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panigrahi, Swapnesh</creatorcontrib><creatorcontrib>Murat, Dorothée</creatorcontrib><creatorcontrib>Le Gall, Antoine</creatorcontrib><creatorcontrib>Martineau, Eugénie</creatorcontrib><creatorcontrib>Goldlust, Kelly</creatorcontrib><creatorcontrib>Fiche, Jean-Bernard</creatorcontrib><creatorcontrib>Rombouts, Sara</creatorcontrib><creatorcontrib>Nöllmann, Marcelo</creatorcontrib><creatorcontrib>Espinosa, Leon</creatorcontrib><creatorcontrib>Mignot, Tâm</creatorcontrib><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panigrahi, Swapnesh</au><au>Murat, Dorothée</au><au>Le Gall, Antoine</au><au>Martineau, Eugénie</au><au>Goldlust, Kelly</au><au>Fiche, Jean-Bernard</au><au>Rombouts, Sara</au><au>Nöllmann, Marcelo</au><au>Espinosa, Leon</au><au>Mignot, Tâm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities</atitle><jtitle>eLife</jtitle><date>2021-09-09</date><risdate>2021</risdate><volume>10</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.</abstract><cop>Cambridge</cop><pub>eLife Science Publications, Ltd</pub><pmid>34498586</pmid><doi>10.7554/eLife.65151</doi><orcidid>https://orcid.org/0000-0001-5809-9267</orcidid><orcidid>https://orcid.org/0000-0002-1923-2069</orcidid><orcidid>https://orcid.org/0000-0003-4338-9063</orcidid><orcidid>https://orcid.org/0009-0002-2811-1004</orcidid><orcidid>https://orcid.org/0000-0003-3339-2349</orcidid><orcidid>https://orcid.org/0000-0002-5933-7033</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2021-09, Vol.10
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b911c8ea9855474b86e9b6372224a944
source Publicly Available Content Database; PubMed Central
subjects Animal behavior
Bacteria
Bacteriology
Biofilms
Cells
Computational and Systems Biology
Deep learning
E coli
Eigenvalues
image analysis
Life Sciences
Methods
Microbiology and Infectious Disease
Microbiology and Parasitology
Microbiomes
Microscopy
myxococcus xanthus
Noise
Predator-prey interactions
Prey
Segmentation
Semantics
Tools and Resources
title Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Misic,%20a%20general%20deep%20learning-based%20method%20for%20the%20high-throughput%20cell%20segmentation%20of%20complex%20bacterial%20communities&rft.jtitle=eLife&rft.au=Panigrahi,%20Swapnesh&rft.date=2021-09-09&rft.volume=10&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.65151&rft_dat=%3Cgale_doaj_%3EA677084478%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5021-aa03001726cff395d19eb9cad5a335113d009f035d0f5306f1e8df7e9f79a2ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595224696&rft_id=info:pmid/34498586&rft_galeid=A677084478&rfr_iscdi=true