Loading…

PSDFH: A Phase-Space-Based Depth from Hologram Extraction Method

Object pre-localization from computer-generated holograms is still an open problem in the current state of the art. In this work, we propose the use of the hologram phase space representation to determine a set of regions of interest where the searched object can be located. The extracted regions ca...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-02, Vol.13 (4), p.2463
Main Authors: Madali, Nabil, Gilles, Antonin, Gioia, Patrick, Morin, Luce
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Object pre-localization from computer-generated holograms is still an open problem in the current state of the art. In this work, we propose the use of the hologram phase space representation to determine a set of regions of interest where the searched object can be located. The extracted regions can be used to pre-locate the object in 3D space and are further refined to produce a more accurate depth estimate. An iterative refinement method is proposed for 1D holograms and is extended in a parsimonious version for 2D holograms. A series of experiments are conducted to assess the quality of the extracted regions of interest and the sparse depth estimate produced by the iterative refinement method. Experimental results show that it is possible to pre-localize the object in 3D space from the phase space representation and thus to improve the calculation time by reducing the number of operations and numerical reconstructions necessary for the application of s (DFF) methods. Using the proposed methodology, the time for the application of the DFF method is reduced by half, and the accuracy is increased by a factor of three.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13042463