Loading…

Numerical Methods Coupled with Richardson Extrapolation for Computation of Transient Power Systems

The numerical solution of transient stability problems is a key element for electrical power system operation. The classical model for multi-machine systems is defined as a set of non-linear differential equations for the rotor speed and the generator angle for each electrical machine, this mathemat...

Full description

Saved in:
Bibliographic Details
Published in:Ingeniería y ciencia (Medellín, Colombia) Colombia), 2017-12, Vol.13 (26), p.65-89
Main Authors: Florez, Whady F, Gonzales, Jorge W, Hill, Alan F, Lopez, Gabriel J, Lopez, Juan D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 89
container_issue 26
container_start_page 65
container_title Ingeniería y ciencia (Medellín, Colombia)
container_volume 13
creator Florez, Whady F
Gonzales, Jorge W
Hill, Alan F
Lopez, Gabriel J
Lopez, Juan D
description The numerical solution of transient stability problems is a key element for electrical power system operation. The classical model for multi-machine systems is defined as a set of non-linear differential equations for the rotor speed and the generator angle for each electrical machine, this mathematical model is usually known as the swing equations. This paper presents how to use direct Richardson extrapolation of several orders for the numerical solution of the swing equations and compares it with other commonly used implicit and explicit solvers such as Runge-Kutta, trapezoidal, Shampine and Radau methods. A numerical study on a simple three machine system is used to illustrate the performance and implementation of algebraic Richardson extrapolation coupled to several solution methods. Normally, the order of accuracy of any numerical solution can be increased when Richardson Extrapolation is used. A numerical example is provided for an electrical grid consisting of three machines and nine buses undergoing a disturbance. It is shown that in this case Richardson extrapolation effectively increases the order of accuracy of the explicit methods making them competitive with the implicit methods.
doi_str_mv 10.17230/ingciencia.13.26.3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b9295bc7d25b4adfa43ff54d5fe43098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S1794_91652017000200065</scielo_id><doaj_id>oai_doaj_org_article_b9295bc7d25b4adfa43ff54d5fe43098</doaj_id><sourcerecordid>2242081091</sourcerecordid><originalsourceid>FETCH-LOGICAL-d1865-a589e6c234796f5f657d069763d709d05bda7342ff6554c6cccd2b996593ff7d3</originalsourceid><addsrcrecordid>eNpVkUtrGzEURkVJoY7bX9DNQNcz0VsWdBNMmgaStCTuWmj0iGXGo6mkwc2_jxIbShbicu_VOUh8AHxFsEMCE3gRxicT3GiC7hDpMO_IB7DAmPGWEkTPwAIJSVuJOPsEznPeQcgoIWIB-vt571IwemjuXNlGm5t1nKfB2eYQyrZ5CGark81xbK7-laSnOOgSaudjqjf301yOffTNJukx11eU5nc8uNQ8Pufi9vkz-Oj1kN2XU12CPz-uNuuf7e2v65v15W1r0YqzVrOVdNxgQoXknnnOhIVcCk6sgNJC1lstCMW-bhg13BhjcS8lZ5J4LyxZgpuj10a9U1MKe52eVdRBvQ1ielI6lWAGp3qJJeuNsJj1VFuvaVUwapl3lEC5qq7vJ1fQw-jKe91pNo8hhbjTymV1-bCBECJMqaiBLEF3xHNNZYhqF-c01r-rx9cc1GsOGCJRCVwPZxX4dgSmFP_OLpf_CMYUwxWCEpEXvRWWng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242081091</pqid></control><display><type>article</type><title>Numerical Methods Coupled with Richardson Extrapolation for Computation of Transient Power Systems</title><source>Publicly Available Content Database</source><creator>Florez, Whady F ; Gonzales, Jorge W ; Hill, Alan F ; Lopez, Gabriel J ; Lopez, Juan D</creator><creatorcontrib>Florez, Whady F ; Gonzales, Jorge W ; Hill, Alan F ; Lopez, Gabriel J ; Lopez, Juan D</creatorcontrib><description>The numerical solution of transient stability problems is a key element for electrical power system operation. The classical model for multi-machine systems is defined as a set of non-linear differential equations for the rotor speed and the generator angle for each electrical machine, this mathematical model is usually known as the swing equations. This paper presents how to use direct Richardson extrapolation of several orders for the numerical solution of the swing equations and compares it with other commonly used implicit and explicit solvers such as Runge-Kutta, trapezoidal, Shampine and Radau methods. A numerical study on a simple three machine system is used to illustrate the performance and implementation of algebraic Richardson extrapolation coupled to several solution methods. Normally, the order of accuracy of any numerical solution can be increased when Richardson Extrapolation is used. A numerical example is provided for an electrical grid consisting of three machines and nine buses undergoing a disturbance. It is shown that in this case Richardson extrapolation effectively increases the order of accuracy of the explicit methods making them competitive with the implicit methods.</description><identifier>ISSN: 1794-9165</identifier><identifier>EISSN: 2256-4314</identifier><identifier>DOI: 10.17230/ingciencia.13.26.3</identifier><language>eng</language><publisher>Medellín: UNIVERSIDAD EAFIT</publisher><subject>Accuracy ; Differential equations ; dynamic equations ; Electric power ; Electric power systems ; engineering ; ENGINEERING, MULTIDISCIPLINARY ; Extrapolation ; Implicit methods ; Mathematical models ; mathematics ; Nonlinear equations ; Numerical analysis ; Numerical methods ; Power system transient stability ; Richardson extrapolation ; Rotor speed ; Runge-Kutta method ; Simulation ; Solvers ; Transient stability</subject><ispartof>Ingeniería y ciencia (Medellín, Colombia), 2017-12, Vol.13 (26), p.65-89</ispartof><rights>2017. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2242081091/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2242081091?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Florez, Whady F</creatorcontrib><creatorcontrib>Gonzales, Jorge W</creatorcontrib><creatorcontrib>Hill, Alan F</creatorcontrib><creatorcontrib>Lopez, Gabriel J</creatorcontrib><creatorcontrib>Lopez, Juan D</creatorcontrib><title>Numerical Methods Coupled with Richardson Extrapolation for Computation of Transient Power Systems</title><title>Ingeniería y ciencia (Medellín, Colombia)</title><addtitle>ing.cienc</addtitle><description>The numerical solution of transient stability problems is a key element for electrical power system operation. The classical model for multi-machine systems is defined as a set of non-linear differential equations for the rotor speed and the generator angle for each electrical machine, this mathematical model is usually known as the swing equations. This paper presents how to use direct Richardson extrapolation of several orders for the numerical solution of the swing equations and compares it with other commonly used implicit and explicit solvers such as Runge-Kutta, trapezoidal, Shampine and Radau methods. A numerical study on a simple three machine system is used to illustrate the performance and implementation of algebraic Richardson extrapolation coupled to several solution methods. Normally, the order of accuracy of any numerical solution can be increased when Richardson Extrapolation is used. A numerical example is provided for an electrical grid consisting of three machines and nine buses undergoing a disturbance. It is shown that in this case Richardson extrapolation effectively increases the order of accuracy of the explicit methods making them competitive with the implicit methods.</description><subject>Accuracy</subject><subject>Differential equations</subject><subject>dynamic equations</subject><subject>Electric power</subject><subject>Electric power systems</subject><subject>engineering</subject><subject>ENGINEERING, MULTIDISCIPLINARY</subject><subject>Extrapolation</subject><subject>Implicit methods</subject><subject>Mathematical models</subject><subject>mathematics</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Power system transient stability</subject><subject>Richardson extrapolation</subject><subject>Rotor speed</subject><subject>Runge-Kutta method</subject><subject>Simulation</subject><subject>Solvers</subject><subject>Transient stability</subject><issn>1794-9165</issn><issn>2256-4314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkUtrGzEURkVJoY7bX9DNQNcz0VsWdBNMmgaStCTuWmj0iGXGo6mkwc2_jxIbShbicu_VOUh8AHxFsEMCE3gRxicT3GiC7hDpMO_IB7DAmPGWEkTPwAIJSVuJOPsEznPeQcgoIWIB-vt571IwemjuXNlGm5t1nKfB2eYQyrZ5CGark81xbK7-laSnOOgSaudjqjf301yOffTNJukx11eU5nc8uNQ8Pufi9vkz-Oj1kN2XU12CPz-uNuuf7e2v65v15W1r0YqzVrOVdNxgQoXknnnOhIVcCk6sgNJC1lstCMW-bhg13BhjcS8lZ5J4LyxZgpuj10a9U1MKe52eVdRBvQ1ielI6lWAGp3qJJeuNsJj1VFuvaVUwapl3lEC5qq7vJ1fQw-jKe91pNo8hhbjTymV1-bCBECJMqaiBLEF3xHNNZYhqF-c01r-rx9cc1GsOGCJRCVwPZxX4dgSmFP_OLpf_CMYUwxWCEpEXvRWWng</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Florez, Whady F</creator><creator>Gonzales, Jorge W</creator><creator>Hill, Alan F</creator><creator>Lopez, Gabriel J</creator><creator>Lopez, Juan D</creator><general>UNIVERSIDAD EAFIT</general><general>Escuela de Ciencias y Humanidades y Escuela de Ingeniería de la Universidad EAFIT</general><general>Universidad EAFIT</general><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>GPN</scope><scope>AGMXS</scope><scope>FKZ</scope><scope>DOA</scope></search><sort><creationdate>20171201</creationdate><title>Numerical Methods Coupled with Richardson Extrapolation for Computation of Transient Power Systems</title><author>Florez, Whady F ; Gonzales, Jorge W ; Hill, Alan F ; Lopez, Gabriel J ; Lopez, Juan D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d1865-a589e6c234796f5f657d069763d709d05bda7342ff6554c6cccd2b996593ff7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Differential equations</topic><topic>dynamic equations</topic><topic>Electric power</topic><topic>Electric power systems</topic><topic>engineering</topic><topic>ENGINEERING, MULTIDISCIPLINARY</topic><topic>Extrapolation</topic><topic>Implicit methods</topic><topic>Mathematical models</topic><topic>mathematics</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Power system transient stability</topic><topic>Richardson extrapolation</topic><topic>Rotor speed</topic><topic>Runge-Kutta method</topic><topic>Simulation</topic><topic>Solvers</topic><topic>Transient stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florez, Whady F</creatorcontrib><creatorcontrib>Gonzales, Jorge W</creatorcontrib><creatorcontrib>Hill, Alan F</creatorcontrib><creatorcontrib>Lopez, Gabriel J</creatorcontrib><creatorcontrib>Lopez, Juan D</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SciELO</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Ingeniería y ciencia (Medellín, Colombia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florez, Whady F</au><au>Gonzales, Jorge W</au><au>Hill, Alan F</au><au>Lopez, Gabriel J</au><au>Lopez, Juan D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Methods Coupled with Richardson Extrapolation for Computation of Transient Power Systems</atitle><jtitle>Ingeniería y ciencia (Medellín, Colombia)</jtitle><addtitle>ing.cienc</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>13</volume><issue>26</issue><spage>65</spage><epage>89</epage><pages>65-89</pages><issn>1794-9165</issn><eissn>2256-4314</eissn><abstract>The numerical solution of transient stability problems is a key element for electrical power system operation. The classical model for multi-machine systems is defined as a set of non-linear differential equations for the rotor speed and the generator angle for each electrical machine, this mathematical model is usually known as the swing equations. This paper presents how to use direct Richardson extrapolation of several orders for the numerical solution of the swing equations and compares it with other commonly used implicit and explicit solvers such as Runge-Kutta, trapezoidal, Shampine and Radau methods. A numerical study on a simple three machine system is used to illustrate the performance and implementation of algebraic Richardson extrapolation coupled to several solution methods. Normally, the order of accuracy of any numerical solution can be increased when Richardson Extrapolation is used. A numerical example is provided for an electrical grid consisting of three machines and nine buses undergoing a disturbance. It is shown that in this case Richardson extrapolation effectively increases the order of accuracy of the explicit methods making them competitive with the implicit methods.</abstract><cop>Medellín</cop><pub>UNIVERSIDAD EAFIT</pub><doi>10.17230/ingciencia.13.26.3</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1794-9165
ispartof Ingeniería y ciencia (Medellín, Colombia), 2017-12, Vol.13 (26), p.65-89
issn 1794-9165
2256-4314
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b9295bc7d25b4adfa43ff54d5fe43098
source Publicly Available Content Database
subjects Accuracy
Differential equations
dynamic equations
Electric power
Electric power systems
engineering
ENGINEERING, MULTIDISCIPLINARY
Extrapolation
Implicit methods
Mathematical models
mathematics
Nonlinear equations
Numerical analysis
Numerical methods
Power system transient stability
Richardson extrapolation
Rotor speed
Runge-Kutta method
Simulation
Solvers
Transient stability
title Numerical Methods Coupled with Richardson Extrapolation for Computation of Transient Power Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Methods%20Coupled%20with%20Richardson%20Extrapolation%20for%20Computation%20of%20Transient%20Power%20Systems&rft.jtitle=Ingenieri%CC%81a%20y%20ciencia%20(Medelli%CC%81n,%20Colombia)&rft.au=Florez,%20Whady%20F&rft.date=2017-12-01&rft.volume=13&rft.issue=26&rft.spage=65&rft.epage=89&rft.pages=65-89&rft.issn=1794-9165&rft.eissn=2256-4314&rft_id=info:doi/10.17230/ingciencia.13.26.3&rft_dat=%3Cproquest_doaj_%3E2242081091%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d1865-a589e6c234796f5f657d069763d709d05bda7342ff6554c6cccd2b996593ff7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242081091&rft_id=info:pmid/&rft_scielo_id=S1794_91652017000200065&rfr_iscdi=true