Loading…

Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles

As concerns about public health and environmental problems regarding contamination by toxic substances increase worldwide, the development of a highly effective and specific treatment method is imperative. Although physicochemical arsenic treatment methods have been developed, microbial in vivo reme...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2019-07, Vol.20 (14), p.3566
Main Authors: Kim, Hyo Kyeong, Jeong, Sun-Wook, Yang, Jung Eun, Choi, Yong Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763
cites cdi_FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763
container_end_page
container_issue 14
container_start_page 3566
container_title International journal of molecular sciences
container_volume 20
creator Kim, Hyo Kyeong
Jeong, Sun-Wook
Yang, Jung Eun
Choi, Yong Jun
description As concerns about public health and environmental problems regarding contamination by toxic substances increase worldwide, the development of a highly effective and specific treatment method is imperative. Although physicochemical arsenic treatment methods have been developed, microbial in vivo remediation processes using live cell fabricated nanoparticles have not yet been reported. Herein, we report the development of magnetic iron nanoparticles immobilized an extremophilic microorganism, R1, capable of removing toxic arsenic species. First, in vivo synthesis of magnetic iron nanoparticles was successfully achieved with the R1 strain and characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), dynamic light scattering (DLS), zeta-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. Second, the maximum removal capacity of the magnetic iron nanoparticle-immobilized R1 strain (DR-FeNPs) for arsenic [As(V)] was evaluated under the optimized conditions. Finally, the removal capacity of DR-FeNPs in the presence of various competitive anions was also investigated to simulate the practical application. More than 98% of As(V) was efficiently removed by DR-FeNPs within 1 h, and the removal efficiency was stably maintained for up to 32 h (98.97%). Furthermore, the possibility of recovery of DR-FeNPs after use was also suggested using magnets as a proof-of-concept.
doi_str_mv 10.3390/ijms20143566
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b9385abafdfd40fdaa324f541b0e7640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b9385abafdfd40fdaa324f541b0e7640</doaj_id><sourcerecordid>2333581483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763</originalsourceid><addsrcrecordid>eNpdks1vEzEQxS0EoqVw44wsceFAwOuxvd4LUhW1tFIAiY8jsma9dupod53am0j573FIqFJOHo1_enrzZgh5XbEPAA37GFZD5qwSIJV6Qs4rwfmMMVU_PanPyIucV4xx4LJ5Ts6gAmBaV-fk901Y3vU7euV9sMGNE8Wxoz8mbHtHv7shbrGn0dPLlN0YLG13dBG2js5d39NrbFOwOLmOfsHl6KYCfMUxrjGVsnf5JXnmsc_u1fG9IL-ur37Ob2aLb59v55eLmRW1nmZ1o5XmXIIXKKzsBFrvZOu16sBCa7XVwBum0HfSl07tPQOrpdRNJW2t4ILcHnS7iCuzTmHAtDMRg_nbiGlpjpZM24CW2BYp3wnmO0TgwktRtczVSrCi9emgtd60g-tsySRh_0j08c8Y7swybo1StVbN3sy7o0CK9xuXJzOEbEteOLq4yaYsoamh5mKPvv0PXcVNGktUhQKQuhIaCvX-QNkUc07OP5ipmNnfgDm9gYK_OR3gAf63dPgDF3etOg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333581483</pqid></control><display><type>article</type><title>Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Kim, Hyo Kyeong ; Jeong, Sun-Wook ; Yang, Jung Eun ; Choi, Yong Jun</creator><creatorcontrib>Kim, Hyo Kyeong ; Jeong, Sun-Wook ; Yang, Jung Eun ; Choi, Yong Jun</creatorcontrib><description>As concerns about public health and environmental problems regarding contamination by toxic substances increase worldwide, the development of a highly effective and specific treatment method is imperative. Although physicochemical arsenic treatment methods have been developed, microbial in vivo remediation processes using live cell fabricated nanoparticles have not yet been reported. Herein, we report the development of magnetic iron nanoparticles immobilized an extremophilic microorganism, R1, capable of removing toxic arsenic species. First, in vivo synthesis of magnetic iron nanoparticles was successfully achieved with the R1 strain and characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), dynamic light scattering (DLS), zeta-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. Second, the maximum removal capacity of the magnetic iron nanoparticle-immobilized R1 strain (DR-FeNPs) for arsenic [As(V)] was evaluated under the optimized conditions. Finally, the removal capacity of DR-FeNPs in the presence of various competitive anions was also investigated to simulate the practical application. More than 98% of As(V) was efficiently removed by DR-FeNPs within 1 h, and the removal efficiency was stably maintained for up to 32 h (98.97%). Furthermore, the possibility of recovery of DR-FeNPs after use was also suggested using magnets as a proof-of-concept.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20143566</identifier><identifier>PMID: 31330881</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adsorption ; Anions ; Anions - chemistry ; Arsenic ; Arsenic - chemistry ; Arsenic - metabolism ; Arsenic compounds ; Biodegradation, Environmental ; bioremediation ; Biosynthesis ; Cancer ; Carcinogens ; Chemical elements ; Deinococcus - metabolism ; Deinococcus radiodurans R1 ; Efficiency ; Environmental protection ; Hazardous materials ; Humans ; Iodine ; Kidney cancer ; Lung cancer ; magnetic nanoparticle ; Magnetite Nanoparticles - chemistry ; Magnetite Nanoparticles - ultrastructure ; Metabolites ; Microorganisms ; Morphology ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Organic chemistry ; Photoelectron spectroscopy ; Photoelectrons ; Poisoning ; Skin cancer ; Skin diseases ; Spectrum Analysis ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>International journal of molecular sciences, 2019-07, Vol.20 (14), p.3566</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763</citedby><cites>FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763</cites><orcidid>0000-0003-3058-7060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2333581483/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2333581483?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31330881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hyo Kyeong</creatorcontrib><creatorcontrib>Jeong, Sun-Wook</creatorcontrib><creatorcontrib>Yang, Jung Eun</creatorcontrib><creatorcontrib>Choi, Yong Jun</creatorcontrib><title>Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>As concerns about public health and environmental problems regarding contamination by toxic substances increase worldwide, the development of a highly effective and specific treatment method is imperative. Although physicochemical arsenic treatment methods have been developed, microbial in vivo remediation processes using live cell fabricated nanoparticles have not yet been reported. Herein, we report the development of magnetic iron nanoparticles immobilized an extremophilic microorganism, R1, capable of removing toxic arsenic species. First, in vivo synthesis of magnetic iron nanoparticles was successfully achieved with the R1 strain and characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), dynamic light scattering (DLS), zeta-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. Second, the maximum removal capacity of the magnetic iron nanoparticle-immobilized R1 strain (DR-FeNPs) for arsenic [As(V)] was evaluated under the optimized conditions. Finally, the removal capacity of DR-FeNPs in the presence of various competitive anions was also investigated to simulate the practical application. More than 98% of As(V) was efficiently removed by DR-FeNPs within 1 h, and the removal efficiency was stably maintained for up to 32 h (98.97%). Furthermore, the possibility of recovery of DR-FeNPs after use was also suggested using magnets as a proof-of-concept.</description><subject>Adsorption</subject><subject>Anions</subject><subject>Anions - chemistry</subject><subject>Arsenic</subject><subject>Arsenic - chemistry</subject><subject>Arsenic - metabolism</subject><subject>Arsenic compounds</subject><subject>Biodegradation, Environmental</subject><subject>bioremediation</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Carcinogens</subject><subject>Chemical elements</subject><subject>Deinococcus - metabolism</subject><subject>Deinococcus radiodurans R1</subject><subject>Efficiency</subject><subject>Environmental protection</subject><subject>Hazardous materials</subject><subject>Humans</subject><subject>Iodine</subject><subject>Kidney cancer</subject><subject>Lung cancer</subject><subject>magnetic nanoparticle</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Magnetite Nanoparticles - ultrastructure</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Poisoning</subject><subject>Skin cancer</subject><subject>Skin diseases</subject><subject>Spectrum Analysis</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1vEzEQxS0EoqVw44wsceFAwOuxvd4LUhW1tFIAiY8jsma9dupod53am0j573FIqFJOHo1_enrzZgh5XbEPAA37GFZD5qwSIJV6Qs4rwfmMMVU_PanPyIucV4xx4LJ5Ts6gAmBaV-fk901Y3vU7euV9sMGNE8Wxoz8mbHtHv7shbrGn0dPLlN0YLG13dBG2js5d39NrbFOwOLmOfsHl6KYCfMUxrjGVsnf5JXnmsc_u1fG9IL-ur37Ob2aLb59v55eLmRW1nmZ1o5XmXIIXKKzsBFrvZOu16sBCa7XVwBum0HfSl07tPQOrpdRNJW2t4ILcHnS7iCuzTmHAtDMRg_nbiGlpjpZM24CW2BYp3wnmO0TgwktRtczVSrCi9emgtd60g-tsySRh_0j08c8Y7swybo1StVbN3sy7o0CK9xuXJzOEbEteOLq4yaYsoamh5mKPvv0PXcVNGktUhQKQuhIaCvX-QNkUc07OP5ipmNnfgDm9gYK_OR3gAf63dPgDF3etOg</recordid><startdate>20190721</startdate><enddate>20190721</enddate><creator>Kim, Hyo Kyeong</creator><creator>Jeong, Sun-Wook</creator><creator>Yang, Jung Eun</creator><creator>Choi, Yong Jun</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3058-7060</orcidid></search><sort><creationdate>20190721</creationdate><title>Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles</title><author>Kim, Hyo Kyeong ; Jeong, Sun-Wook ; Yang, Jung Eun ; Choi, Yong Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Anions</topic><topic>Anions - chemistry</topic><topic>Arsenic</topic><topic>Arsenic - chemistry</topic><topic>Arsenic - metabolism</topic><topic>Arsenic compounds</topic><topic>Biodegradation, Environmental</topic><topic>bioremediation</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Carcinogens</topic><topic>Chemical elements</topic><topic>Deinococcus - metabolism</topic><topic>Deinococcus radiodurans R1</topic><topic>Efficiency</topic><topic>Environmental protection</topic><topic>Hazardous materials</topic><topic>Humans</topic><topic>Iodine</topic><topic>Kidney cancer</topic><topic>Lung cancer</topic><topic>magnetic nanoparticle</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Magnetite Nanoparticles - ultrastructure</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Poisoning</topic><topic>Skin cancer</topic><topic>Skin diseases</topic><topic>Spectrum Analysis</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyo Kyeong</creatorcontrib><creatorcontrib>Jeong, Sun-Wook</creatorcontrib><creatorcontrib>Yang, Jung Eun</creatorcontrib><creatorcontrib>Choi, Yong Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyo Kyeong</au><au>Jeong, Sun-Wook</au><au>Yang, Jung Eun</au><au>Choi, Yong Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-07-21</date><risdate>2019</risdate><volume>20</volume><issue>14</issue><spage>3566</spage><pages>3566-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>As concerns about public health and environmental problems regarding contamination by toxic substances increase worldwide, the development of a highly effective and specific treatment method is imperative. Although physicochemical arsenic treatment methods have been developed, microbial in vivo remediation processes using live cell fabricated nanoparticles have not yet been reported. Herein, we report the development of magnetic iron nanoparticles immobilized an extremophilic microorganism, R1, capable of removing toxic arsenic species. First, in vivo synthesis of magnetic iron nanoparticles was successfully achieved with the R1 strain and characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), dynamic light scattering (DLS), zeta-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. Second, the maximum removal capacity of the magnetic iron nanoparticle-immobilized R1 strain (DR-FeNPs) for arsenic [As(V)] was evaluated under the optimized conditions. Finally, the removal capacity of DR-FeNPs in the presence of various competitive anions was also investigated to simulate the practical application. More than 98% of As(V) was efficiently removed by DR-FeNPs within 1 h, and the removal efficiency was stably maintained for up to 32 h (98.97%). Furthermore, the possibility of recovery of DR-FeNPs after use was also suggested using magnets as a proof-of-concept.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31330881</pmid><doi>10.3390/ijms20143566</doi><orcidid>https://orcid.org/0000-0003-3058-7060</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2019-07, Vol.20 (14), p.3566
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b9385abafdfd40fdaa324f541b0e7640
source Open Access: PubMed Central; Publicly Available Content Database
subjects Adsorption
Anions
Anions - chemistry
Arsenic
Arsenic - chemistry
Arsenic - metabolism
Arsenic compounds
Biodegradation, Environmental
bioremediation
Biosynthesis
Cancer
Carcinogens
Chemical elements
Deinococcus - metabolism
Deinococcus radiodurans R1
Efficiency
Environmental protection
Hazardous materials
Humans
Iodine
Kidney cancer
Lung cancer
magnetic nanoparticle
Magnetite Nanoparticles - chemistry
Magnetite Nanoparticles - ultrastructure
Metabolites
Microorganisms
Morphology
Nanomaterials
Nanoparticles
Nanotechnology
Organic chemistry
Photoelectron spectroscopy
Photoelectrons
Poisoning
Skin cancer
Skin diseases
Spectrum Analysis
X ray photoelectron spectroscopy
X-ray diffraction
title Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20and%20Stable%20Removal%20of%20Arsenic%20by%20Live%20Cell%20Fabricated%20Magnetic%20Nanoparticles&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Kim,%20Hyo%20Kyeong&rft.date=2019-07-21&rft.volume=20&rft.issue=14&rft.spage=3566&rft.pages=3566-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20143566&rft_dat=%3Cproquest_doaj_%3E2333581483%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2333581483&rft_id=info:pmid/31330881&rfr_iscdi=true