Loading…
Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles
As concerns about public health and environmental problems regarding contamination by toxic substances increase worldwide, the development of a highly effective and specific treatment method is imperative. Although physicochemical arsenic treatment methods have been developed, microbial in vivo reme...
Saved in:
Published in: | International journal of molecular sciences 2019-07, Vol.20 (14), p.3566 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763 |
container_end_page | |
container_issue | 14 |
container_start_page | 3566 |
container_title | International journal of molecular sciences |
container_volume | 20 |
creator | Kim, Hyo Kyeong Jeong, Sun-Wook Yang, Jung Eun Choi, Yong Jun |
description | As concerns about public health and environmental problems regarding contamination by toxic substances increase worldwide, the development of a highly effective and specific treatment method is imperative. Although physicochemical arsenic treatment methods have been developed, microbial in vivo remediation processes using live cell fabricated nanoparticles have not yet been reported. Herein, we report the development of magnetic iron nanoparticles immobilized an extremophilic microorganism,
R1, capable of removing toxic arsenic species. First, in vivo synthesis of magnetic iron nanoparticles was successfully achieved with the
R1 strain and characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), dynamic light scattering (DLS), zeta-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. Second, the maximum removal capacity of the magnetic iron nanoparticle-immobilized
R1 strain (DR-FeNPs) for arsenic [As(V)] was evaluated under the optimized conditions. Finally, the removal capacity of DR-FeNPs in the presence of various competitive anions was also investigated to simulate the practical application. More than 98% of As(V) was efficiently removed by DR-FeNPs within 1 h, and the removal efficiency was stably maintained for up to 32 h (98.97%). Furthermore, the possibility of recovery of DR-FeNPs after use was also suggested using magnets as a proof-of-concept. |
doi_str_mv | 10.3390/ijms20143566 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b9385abafdfd40fdaa324f541b0e7640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b9385abafdfd40fdaa324f541b0e7640</doaj_id><sourcerecordid>2333581483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763</originalsourceid><addsrcrecordid>eNpdks1vEzEQxS0EoqVw44wsceFAwOuxvd4LUhW1tFIAiY8jsma9dupod53am0j573FIqFJOHo1_enrzZgh5XbEPAA37GFZD5qwSIJV6Qs4rwfmMMVU_PanPyIucV4xx4LJ5Ts6gAmBaV-fk901Y3vU7euV9sMGNE8Wxoz8mbHtHv7shbrGn0dPLlN0YLG13dBG2js5d39NrbFOwOLmOfsHl6KYCfMUxrjGVsnf5JXnmsc_u1fG9IL-ur37Ob2aLb59v55eLmRW1nmZ1o5XmXIIXKKzsBFrvZOu16sBCa7XVwBum0HfSl07tPQOrpdRNJW2t4ILcHnS7iCuzTmHAtDMRg_nbiGlpjpZM24CW2BYp3wnmO0TgwktRtczVSrCi9emgtd60g-tsySRh_0j08c8Y7swybo1StVbN3sy7o0CK9xuXJzOEbEteOLq4yaYsoamh5mKPvv0PXcVNGktUhQKQuhIaCvX-QNkUc07OP5ipmNnfgDm9gYK_OR3gAf63dPgDF3etOg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333581483</pqid></control><display><type>article</type><title>Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Kim, Hyo Kyeong ; Jeong, Sun-Wook ; Yang, Jung Eun ; Choi, Yong Jun</creator><creatorcontrib>Kim, Hyo Kyeong ; Jeong, Sun-Wook ; Yang, Jung Eun ; Choi, Yong Jun</creatorcontrib><description>As concerns about public health and environmental problems regarding contamination by toxic substances increase worldwide, the development of a highly effective and specific treatment method is imperative. Although physicochemical arsenic treatment methods have been developed, microbial in vivo remediation processes using live cell fabricated nanoparticles have not yet been reported. Herein, we report the development of magnetic iron nanoparticles immobilized an extremophilic microorganism,
R1, capable of removing toxic arsenic species. First, in vivo synthesis of magnetic iron nanoparticles was successfully achieved with the
R1 strain and characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), dynamic light scattering (DLS), zeta-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. Second, the maximum removal capacity of the magnetic iron nanoparticle-immobilized
R1 strain (DR-FeNPs) for arsenic [As(V)] was evaluated under the optimized conditions. Finally, the removal capacity of DR-FeNPs in the presence of various competitive anions was also investigated to simulate the practical application. More than 98% of As(V) was efficiently removed by DR-FeNPs within 1 h, and the removal efficiency was stably maintained for up to 32 h (98.97%). Furthermore, the possibility of recovery of DR-FeNPs after use was also suggested using magnets as a proof-of-concept.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20143566</identifier><identifier>PMID: 31330881</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adsorption ; Anions ; Anions - chemistry ; Arsenic ; Arsenic - chemistry ; Arsenic - metabolism ; Arsenic compounds ; Biodegradation, Environmental ; bioremediation ; Biosynthesis ; Cancer ; Carcinogens ; Chemical elements ; Deinococcus - metabolism ; Deinococcus radiodurans R1 ; Efficiency ; Environmental protection ; Hazardous materials ; Humans ; Iodine ; Kidney cancer ; Lung cancer ; magnetic nanoparticle ; Magnetite Nanoparticles - chemistry ; Magnetite Nanoparticles - ultrastructure ; Metabolites ; Microorganisms ; Morphology ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Organic chemistry ; Photoelectron spectroscopy ; Photoelectrons ; Poisoning ; Skin cancer ; Skin diseases ; Spectrum Analysis ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>International journal of molecular sciences, 2019-07, Vol.20 (14), p.3566</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763</citedby><cites>FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763</cites><orcidid>0000-0003-3058-7060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2333581483/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2333581483?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31330881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hyo Kyeong</creatorcontrib><creatorcontrib>Jeong, Sun-Wook</creatorcontrib><creatorcontrib>Yang, Jung Eun</creatorcontrib><creatorcontrib>Choi, Yong Jun</creatorcontrib><title>Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>As concerns about public health and environmental problems regarding contamination by toxic substances increase worldwide, the development of a highly effective and specific treatment method is imperative. Although physicochemical arsenic treatment methods have been developed, microbial in vivo remediation processes using live cell fabricated nanoparticles have not yet been reported. Herein, we report the development of magnetic iron nanoparticles immobilized an extremophilic microorganism,
R1, capable of removing toxic arsenic species. First, in vivo synthesis of magnetic iron nanoparticles was successfully achieved with the
R1 strain and characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), dynamic light scattering (DLS), zeta-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. Second, the maximum removal capacity of the magnetic iron nanoparticle-immobilized
R1 strain (DR-FeNPs) for arsenic [As(V)] was evaluated under the optimized conditions. Finally, the removal capacity of DR-FeNPs in the presence of various competitive anions was also investigated to simulate the practical application. More than 98% of As(V) was efficiently removed by DR-FeNPs within 1 h, and the removal efficiency was stably maintained for up to 32 h (98.97%). Furthermore, the possibility of recovery of DR-FeNPs after use was also suggested using magnets as a proof-of-concept.</description><subject>Adsorption</subject><subject>Anions</subject><subject>Anions - chemistry</subject><subject>Arsenic</subject><subject>Arsenic - chemistry</subject><subject>Arsenic - metabolism</subject><subject>Arsenic compounds</subject><subject>Biodegradation, Environmental</subject><subject>bioremediation</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Carcinogens</subject><subject>Chemical elements</subject><subject>Deinococcus - metabolism</subject><subject>Deinococcus radiodurans R1</subject><subject>Efficiency</subject><subject>Environmental protection</subject><subject>Hazardous materials</subject><subject>Humans</subject><subject>Iodine</subject><subject>Kidney cancer</subject><subject>Lung cancer</subject><subject>magnetic nanoparticle</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Magnetite Nanoparticles - ultrastructure</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Poisoning</subject><subject>Skin cancer</subject><subject>Skin diseases</subject><subject>Spectrum Analysis</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1vEzEQxS0EoqVw44wsceFAwOuxvd4LUhW1tFIAiY8jsma9dupod53am0j573FIqFJOHo1_enrzZgh5XbEPAA37GFZD5qwSIJV6Qs4rwfmMMVU_PanPyIucV4xx4LJ5Ts6gAmBaV-fk901Y3vU7euV9sMGNE8Wxoz8mbHtHv7shbrGn0dPLlN0YLG13dBG2js5d39NrbFOwOLmOfsHl6KYCfMUxrjGVsnf5JXnmsc_u1fG9IL-ur37Ob2aLb59v55eLmRW1nmZ1o5XmXIIXKKzsBFrvZOu16sBCa7XVwBum0HfSl07tPQOrpdRNJW2t4ILcHnS7iCuzTmHAtDMRg_nbiGlpjpZM24CW2BYp3wnmO0TgwktRtczVSrCi9emgtd60g-tsySRh_0j08c8Y7swybo1StVbN3sy7o0CK9xuXJzOEbEteOLq4yaYsoamh5mKPvv0PXcVNGktUhQKQuhIaCvX-QNkUc07OP5ipmNnfgDm9gYK_OR3gAf63dPgDF3etOg</recordid><startdate>20190721</startdate><enddate>20190721</enddate><creator>Kim, Hyo Kyeong</creator><creator>Jeong, Sun-Wook</creator><creator>Yang, Jung Eun</creator><creator>Choi, Yong Jun</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3058-7060</orcidid></search><sort><creationdate>20190721</creationdate><title>Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles</title><author>Kim, Hyo Kyeong ; Jeong, Sun-Wook ; Yang, Jung Eun ; Choi, Yong Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Anions</topic><topic>Anions - chemistry</topic><topic>Arsenic</topic><topic>Arsenic - chemistry</topic><topic>Arsenic - metabolism</topic><topic>Arsenic compounds</topic><topic>Biodegradation, Environmental</topic><topic>bioremediation</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Carcinogens</topic><topic>Chemical elements</topic><topic>Deinococcus - metabolism</topic><topic>Deinococcus radiodurans R1</topic><topic>Efficiency</topic><topic>Environmental protection</topic><topic>Hazardous materials</topic><topic>Humans</topic><topic>Iodine</topic><topic>Kidney cancer</topic><topic>Lung cancer</topic><topic>magnetic nanoparticle</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Magnetite Nanoparticles - ultrastructure</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Poisoning</topic><topic>Skin cancer</topic><topic>Skin diseases</topic><topic>Spectrum Analysis</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyo Kyeong</creatorcontrib><creatorcontrib>Jeong, Sun-Wook</creatorcontrib><creatorcontrib>Yang, Jung Eun</creatorcontrib><creatorcontrib>Choi, Yong Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyo Kyeong</au><au>Jeong, Sun-Wook</au><au>Yang, Jung Eun</au><au>Choi, Yong Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-07-21</date><risdate>2019</risdate><volume>20</volume><issue>14</issue><spage>3566</spage><pages>3566-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>As concerns about public health and environmental problems regarding contamination by toxic substances increase worldwide, the development of a highly effective and specific treatment method is imperative. Although physicochemical arsenic treatment methods have been developed, microbial in vivo remediation processes using live cell fabricated nanoparticles have not yet been reported. Herein, we report the development of magnetic iron nanoparticles immobilized an extremophilic microorganism,
R1, capable of removing toxic arsenic species. First, in vivo synthesis of magnetic iron nanoparticles was successfully achieved with the
R1 strain and characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), dynamic light scattering (DLS), zeta-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. Second, the maximum removal capacity of the magnetic iron nanoparticle-immobilized
R1 strain (DR-FeNPs) for arsenic [As(V)] was evaluated under the optimized conditions. Finally, the removal capacity of DR-FeNPs in the presence of various competitive anions was also investigated to simulate the practical application. More than 98% of As(V) was efficiently removed by DR-FeNPs within 1 h, and the removal efficiency was stably maintained for up to 32 h (98.97%). Furthermore, the possibility of recovery of DR-FeNPs after use was also suggested using magnets as a proof-of-concept.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31330881</pmid><doi>10.3390/ijms20143566</doi><orcidid>https://orcid.org/0000-0003-3058-7060</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2019-07, Vol.20 (14), p.3566 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b9385abafdfd40fdaa324f541b0e7640 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Adsorption Anions Anions - chemistry Arsenic Arsenic - chemistry Arsenic - metabolism Arsenic compounds Biodegradation, Environmental bioremediation Biosynthesis Cancer Carcinogens Chemical elements Deinococcus - metabolism Deinococcus radiodurans R1 Efficiency Environmental protection Hazardous materials Humans Iodine Kidney cancer Lung cancer magnetic nanoparticle Magnetite Nanoparticles - chemistry Magnetite Nanoparticles - ultrastructure Metabolites Microorganisms Morphology Nanomaterials Nanoparticles Nanotechnology Organic chemistry Photoelectron spectroscopy Photoelectrons Poisoning Skin cancer Skin diseases Spectrum Analysis X ray photoelectron spectroscopy X-ray diffraction |
title | Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20and%20Stable%20Removal%20of%20Arsenic%20by%20Live%20Cell%20Fabricated%20Magnetic%20Nanoparticles&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Kim,%20Hyo%20Kyeong&rft.date=2019-07-21&rft.volume=20&rft.issue=14&rft.spage=3566&rft.pages=3566-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20143566&rft_dat=%3Cproquest_doaj_%3E2333581483%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-798682253f4a4c5d4acfe5bf86d3c3bc8c832906afd5f3c37ff03c8558915c763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2333581483&rft_id=info:pmid/31330881&rfr_iscdi=true |