Loading…

Performance of the WRF Model for the Forecasting of the V-Shaped Storm Recorded on 11–12 November 2019 in the Eastern Sicily

During the autumn season, Sicily is often affected by severe weather events, such as self-healing storms called V-shaped storms. These phenomena cause significant total rainfall quantities in short time intervals in localized spatial areas. In this framework, this study analyzes the meteorological e...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2023-02, Vol.14 (2), p.390
Main Authors: Castorina, Giuseppe, Semprebello, Agostino, Insinga, Vincenzo, Italiano, Francesco, Caccamo, Maria Teresa, Magazù, Salvatore, Morichetti, Mauro, Rizza, Umberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-f7fca1aa1ced2b85ac222e2185ad5b766084e04bc6366ea52ef03161d9ae6c873
cites cdi_FETCH-LOGICAL-c409t-f7fca1aa1ced2b85ac222e2185ad5b766084e04bc6366ea52ef03161d9ae6c873
container_end_page
container_issue 2
container_start_page 390
container_title Atmosphere
container_volume 14
creator Castorina, Giuseppe
Semprebello, Agostino
Insinga, Vincenzo
Italiano, Francesco
Caccamo, Maria Teresa
Magazù, Salvatore
Morichetti, Mauro
Rizza, Umberto
description During the autumn season, Sicily is often affected by severe weather events, such as self-healing storms called V-shaped storms. These phenomena cause significant total rainfall quantities in short time intervals in localized spatial areas. In this framework, this study analyzes the meteorological event recorded on 11–12 November 2019 in Sicily (southern Italy), using the Weather Research and Forecasting (WRF) model with a horizontal spatial grid resolution of 3 km. It is important to note that, in this event, the most significant rainfall accumulations were recorded in eastern Sicily. In particular, the weather station of Linguaglossa North Etna (Catania) recorded a total rainfall of 293.6 mm. The precipitation forecasting provided by the WRF model simulation has been compared with the data recorded by the meteorological stations located in Sicily. In addition, a further simulation was carried out using the Four-Dimensional Data Assimilation (FDDA) technique to improve the model capability in the event reproduction. In this regard, in order to evaluate which approach provides the best performance (with or without FDDA), the Root Mean Square Error (RMSE) and dichotomous indexes (Accuracy, Threat Score, BIAS, Probability of Detection, and False Alarm Rate) were calculated.
doi_str_mv 10.3390/atmos14020390
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b95a8062bf7740339026a39b09a778bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A742993275</galeid><doaj_id>oai_doaj_org_article_b95a8062bf7740339026a39b09a778bf</doaj_id><sourcerecordid>A742993275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-f7fca1aa1ced2b85ac222e2185ad5b766084e04bc6366ea52ef03161d9ae6c873</originalsourceid><addsrcrecordid>eNpVUcFu1DAQjRCVqEqP3C1xTrHHjh0fq6oLldqCugWO1sQZb73axIuTIvWC-Af-sF9SdxcQeA6eeX7v6clTVW8EP5HS8nc4D2kSigMv04vqELiRtVJSvvynf1UdT9Oal6OsBKkOqx-fKIeUBxw9sRTYfEfs682CXaWeNqy87JBFyuRxmuO4-kP6Ui_vcEs9W85Fzm7Ip9yXMY1MiMefvwSw6_Sdho4yAy4si-NOd15sKI9sGX3cPLyuDgJuJjr-fR9Vnxfnt2cf6suP7y_OTi9rr7id62CCR4EoPPXQtQ16ACAQpeubzmjNW0VcdV5LrQkboMCl0KK3SNq3Rh5VF3vfPuHabXMcMD-4hNHtgJRXDvMc_YZcZxtsuYYuGKP489-CRmk7btGYtgvF6-3ea5vTt3uaZrdO93ks8R0YYxuQuoXCOtmzVlhM4xjSnNGX6mmIPo0UYsFPjQJbVmGaIqj3Ap_TNGUKf2MK7p5juP9WLJ8A-m2Xtg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779523682</pqid></control><display><type>article</type><title>Performance of the WRF Model for the Forecasting of the V-Shaped Storm Recorded on 11–12 November 2019 in the Eastern Sicily</title><source>Publicly Available Content (ProQuest)</source><creator>Castorina, Giuseppe ; Semprebello, Agostino ; Insinga, Vincenzo ; Italiano, Francesco ; Caccamo, Maria Teresa ; Magazù, Salvatore ; Morichetti, Mauro ; Rizza, Umberto</creator><creatorcontrib>Castorina, Giuseppe ; Semprebello, Agostino ; Insinga, Vincenzo ; Italiano, Francesco ; Caccamo, Maria Teresa ; Magazù, Salvatore ; Morichetti, Mauro ; Rizza, Umberto</creatorcontrib><description>During the autumn season, Sicily is often affected by severe weather events, such as self-healing storms called V-shaped storms. These phenomena cause significant total rainfall quantities in short time intervals in localized spatial areas. In this framework, this study analyzes the meteorological event recorded on 11–12 November 2019 in Sicily (southern Italy), using the Weather Research and Forecasting (WRF) model with a horizontal spatial grid resolution of 3 km. It is important to note that, in this event, the most significant rainfall accumulations were recorded in eastern Sicily. In particular, the weather station of Linguaglossa North Etna (Catania) recorded a total rainfall of 293.6 mm. The precipitation forecasting provided by the WRF model simulation has been compared with the data recorded by the meteorological stations located in Sicily. In addition, a further simulation was carried out using the Four-Dimensional Data Assimilation (FDDA) technique to improve the model capability in the event reproduction. In this regard, in order to evaluate which approach provides the best performance (with or without FDDA), the Root Mean Square Error (RMSE) and dichotomous indexes (Accuracy, Threat Score, BIAS, Probability of Detection, and False Alarm Rate) were calculated.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos14020390</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Climate change ; Cyclone forecasting ; Data assimilation ; Data collection ; False alarms ; FDDA ; Forecasting ; Mathematical models ; Methods ; Modelling ; numerical weather prediction ; Observatories ; Performance indices ; Precipitation ; precipitation forecast ; Precipitation forecasting ; Probability theory ; Rain ; Rain and rainfall ; Rainfall ; Root-mean-square errors ; Severe weather ; severe weather events ; Simulation ; Storms ; Temperature ; Vortices ; Weather ; Weather forecasting ; Weather stations ; WRF model</subject><ispartof>Atmosphere, 2023-02, Vol.14 (2), p.390</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-f7fca1aa1ced2b85ac222e2185ad5b766084e04bc6366ea52ef03161d9ae6c873</citedby><cites>FETCH-LOGICAL-c409t-f7fca1aa1ced2b85ac222e2185ad5b766084e04bc6366ea52ef03161d9ae6c873</cites><orcidid>0000-0003-1333-909X ; 0000-0002-2598-833X ; 0000-0001-8690-5254 ; 0000-0002-7633-3878 ; 0000-0003-1646-3010 ; 0000-0002-9465-6398 ; 0000-0003-2417-0998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779523682/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779523682?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Castorina, Giuseppe</creatorcontrib><creatorcontrib>Semprebello, Agostino</creatorcontrib><creatorcontrib>Insinga, Vincenzo</creatorcontrib><creatorcontrib>Italiano, Francesco</creatorcontrib><creatorcontrib>Caccamo, Maria Teresa</creatorcontrib><creatorcontrib>Magazù, Salvatore</creatorcontrib><creatorcontrib>Morichetti, Mauro</creatorcontrib><creatorcontrib>Rizza, Umberto</creatorcontrib><title>Performance of the WRF Model for the Forecasting of the V-Shaped Storm Recorded on 11–12 November 2019 in the Eastern Sicily</title><title>Atmosphere</title><description>During the autumn season, Sicily is often affected by severe weather events, such as self-healing storms called V-shaped storms. These phenomena cause significant total rainfall quantities in short time intervals in localized spatial areas. In this framework, this study analyzes the meteorological event recorded on 11–12 November 2019 in Sicily (southern Italy), using the Weather Research and Forecasting (WRF) model with a horizontal spatial grid resolution of 3 km. It is important to note that, in this event, the most significant rainfall accumulations were recorded in eastern Sicily. In particular, the weather station of Linguaglossa North Etna (Catania) recorded a total rainfall of 293.6 mm. The precipitation forecasting provided by the WRF model simulation has been compared with the data recorded by the meteorological stations located in Sicily. In addition, a further simulation was carried out using the Four-Dimensional Data Assimilation (FDDA) technique to improve the model capability in the event reproduction. In this regard, in order to evaluate which approach provides the best performance (with or without FDDA), the Root Mean Square Error (RMSE) and dichotomous indexes (Accuracy, Threat Score, BIAS, Probability of Detection, and False Alarm Rate) were calculated.</description><subject>Climate change</subject><subject>Cyclone forecasting</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>False alarms</subject><subject>FDDA</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modelling</subject><subject>numerical weather prediction</subject><subject>Observatories</subject><subject>Performance indices</subject><subject>Precipitation</subject><subject>precipitation forecast</subject><subject>Precipitation forecasting</subject><subject>Probability theory</subject><subject>Rain</subject><subject>Rain and rainfall</subject><subject>Rainfall</subject><subject>Root-mean-square errors</subject><subject>Severe weather</subject><subject>severe weather events</subject><subject>Simulation</subject><subject>Storms</subject><subject>Temperature</subject><subject>Vortices</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Weather stations</subject><subject>WRF model</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUcFu1DAQjRCVqEqP3C1xTrHHjh0fq6oLldqCugWO1sQZb73axIuTIvWC-Af-sF9SdxcQeA6eeX7v6clTVW8EP5HS8nc4D2kSigMv04vqELiRtVJSvvynf1UdT9Oal6OsBKkOqx-fKIeUBxw9sRTYfEfs682CXaWeNqy87JBFyuRxmuO4-kP6Ui_vcEs9W85Fzm7Ip9yXMY1MiMefvwSw6_Sdho4yAy4si-NOd15sKI9sGX3cPLyuDgJuJjr-fR9Vnxfnt2cf6suP7y_OTi9rr7id62CCR4EoPPXQtQ16ACAQpeubzmjNW0VcdV5LrQkboMCl0KK3SNq3Rh5VF3vfPuHabXMcMD-4hNHtgJRXDvMc_YZcZxtsuYYuGKP489-CRmk7btGYtgvF6-3ea5vTt3uaZrdO93ks8R0YYxuQuoXCOtmzVlhM4xjSnNGX6mmIPo0UYsFPjQJbVmGaIqj3Ap_TNGUKf2MK7p5juP9WLJ8A-m2Xtg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Castorina, Giuseppe</creator><creator>Semprebello, Agostino</creator><creator>Insinga, Vincenzo</creator><creator>Italiano, Francesco</creator><creator>Caccamo, Maria Teresa</creator><creator>Magazù, Salvatore</creator><creator>Morichetti, Mauro</creator><creator>Rizza, Umberto</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1333-909X</orcidid><orcidid>https://orcid.org/0000-0002-2598-833X</orcidid><orcidid>https://orcid.org/0000-0001-8690-5254</orcidid><orcidid>https://orcid.org/0000-0002-7633-3878</orcidid><orcidid>https://orcid.org/0000-0003-1646-3010</orcidid><orcidid>https://orcid.org/0000-0002-9465-6398</orcidid><orcidid>https://orcid.org/0000-0003-2417-0998</orcidid></search><sort><creationdate>20230201</creationdate><title>Performance of the WRF Model for the Forecasting of the V-Shaped Storm Recorded on 11–12 November 2019 in the Eastern Sicily</title><author>Castorina, Giuseppe ; Semprebello, Agostino ; Insinga, Vincenzo ; Italiano, Francesco ; Caccamo, Maria Teresa ; Magazù, Salvatore ; Morichetti, Mauro ; Rizza, Umberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-f7fca1aa1ced2b85ac222e2185ad5b766084e04bc6366ea52ef03161d9ae6c873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Climate change</topic><topic>Cyclone forecasting</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>False alarms</topic><topic>FDDA</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modelling</topic><topic>numerical weather prediction</topic><topic>Observatories</topic><topic>Performance indices</topic><topic>Precipitation</topic><topic>precipitation forecast</topic><topic>Precipitation forecasting</topic><topic>Probability theory</topic><topic>Rain</topic><topic>Rain and rainfall</topic><topic>Rainfall</topic><topic>Root-mean-square errors</topic><topic>Severe weather</topic><topic>severe weather events</topic><topic>Simulation</topic><topic>Storms</topic><topic>Temperature</topic><topic>Vortices</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Weather stations</topic><topic>WRF model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castorina, Giuseppe</creatorcontrib><creatorcontrib>Semprebello, Agostino</creatorcontrib><creatorcontrib>Insinga, Vincenzo</creatorcontrib><creatorcontrib>Italiano, Francesco</creatorcontrib><creatorcontrib>Caccamo, Maria Teresa</creatorcontrib><creatorcontrib>Magazù, Salvatore</creatorcontrib><creatorcontrib>Morichetti, Mauro</creatorcontrib><creatorcontrib>Rizza, Umberto</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castorina, Giuseppe</au><au>Semprebello, Agostino</au><au>Insinga, Vincenzo</au><au>Italiano, Francesco</au><au>Caccamo, Maria Teresa</au><au>Magazù, Salvatore</au><au>Morichetti, Mauro</au><au>Rizza, Umberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of the WRF Model for the Forecasting of the V-Shaped Storm Recorded on 11–12 November 2019 in the Eastern Sicily</atitle><jtitle>Atmosphere</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>14</volume><issue>2</issue><spage>390</spage><pages>390-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>During the autumn season, Sicily is often affected by severe weather events, such as self-healing storms called V-shaped storms. These phenomena cause significant total rainfall quantities in short time intervals in localized spatial areas. In this framework, this study analyzes the meteorological event recorded on 11–12 November 2019 in Sicily (southern Italy), using the Weather Research and Forecasting (WRF) model with a horizontal spatial grid resolution of 3 km. It is important to note that, in this event, the most significant rainfall accumulations were recorded in eastern Sicily. In particular, the weather station of Linguaglossa North Etna (Catania) recorded a total rainfall of 293.6 mm. The precipitation forecasting provided by the WRF model simulation has been compared with the data recorded by the meteorological stations located in Sicily. In addition, a further simulation was carried out using the Four-Dimensional Data Assimilation (FDDA) technique to improve the model capability in the event reproduction. In this regard, in order to evaluate which approach provides the best performance (with or without FDDA), the Root Mean Square Error (RMSE) and dichotomous indexes (Accuracy, Threat Score, BIAS, Probability of Detection, and False Alarm Rate) were calculated.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos14020390</doi><orcidid>https://orcid.org/0000-0003-1333-909X</orcidid><orcidid>https://orcid.org/0000-0002-2598-833X</orcidid><orcidid>https://orcid.org/0000-0001-8690-5254</orcidid><orcidid>https://orcid.org/0000-0002-7633-3878</orcidid><orcidid>https://orcid.org/0000-0003-1646-3010</orcidid><orcidid>https://orcid.org/0000-0002-9465-6398</orcidid><orcidid>https://orcid.org/0000-0003-2417-0998</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4433
ispartof Atmosphere, 2023-02, Vol.14 (2), p.390
issn 2073-4433
2073-4433
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b95a8062bf7740339026a39b09a778bf
source Publicly Available Content (ProQuest)
subjects Climate change
Cyclone forecasting
Data assimilation
Data collection
False alarms
FDDA
Forecasting
Mathematical models
Methods
Modelling
numerical weather prediction
Observatories
Performance indices
Precipitation
precipitation forecast
Precipitation forecasting
Probability theory
Rain
Rain and rainfall
Rainfall
Root-mean-square errors
Severe weather
severe weather events
Simulation
Storms
Temperature
Vortices
Weather
Weather forecasting
Weather stations
WRF model
title Performance of the WRF Model for the Forecasting of the V-Shaped Storm Recorded on 11–12 November 2019 in the Eastern Sicily
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20the%20WRF%20Model%20for%20the%20Forecasting%20of%20the%20V-Shaped%20Storm%20Recorded%20on%2011%E2%80%9312%20November%202019%20in%20the%20Eastern%20Sicily&rft.jtitle=Atmosphere&rft.au=Castorina,%20Giuseppe&rft.date=2023-02-01&rft.volume=14&rft.issue=2&rft.spage=390&rft.pages=390-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos14020390&rft_dat=%3Cgale_doaj_%3EA742993275%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-f7fca1aa1ced2b85ac222e2185ad5b766084e04bc6366ea52ef03161d9ae6c873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779523682&rft_id=info:pmid/&rft_galeid=A742993275&rfr_iscdi=true