Loading…
T–S Fuzzy Modeling for Aircraft Engines: The Clustering and Identification Approach
This paper presents a data-based Takagi-Sugeno (T–S) fuzzy modeling approach for aircraft engines in the flight envelope. We propose a series of T–S fuzzy models for engines with flight conditions as premises and engine linear dynamic models as consequences. By engine dynamic clustering, we determin...
Saved in:
Published in: | Energies (Basel) 2019-08, Vol.12 (17), p.3284 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a data-based Takagi-Sugeno (T–S) fuzzy modeling approach for aircraft engines in the flight envelope. We propose a series of T–S fuzzy models for engines with flight conditions as premises and engine linear dynamic models as consequences. By engine dynamic clustering, we determine rough T–S fuzzy models to approximate the nonlinear dynamics of engines in the flight envelope. After that, the maximum–minimum distance-based fuzzy c-means (MMD-FCM) algorithm comes to refine the fuzzy rules and the least square method (LSM) comes to identify premise parameters for each single rough model. The proposed MMD-FCM algorithm guarantees the refined results are stable and reasonable, and the identification improves the accuracy of the steady and transient phases. The model verification showed that the T–S fuzzy models for engines had a high accuracy with a steady error less than 5%, and that the root mean squared error (RMSE) of transient errors was less than 8 × 10−4 with good generalization ability in the flight envelope. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en12173284 |