Loading…

An Integrative Glycomic Approach for Quantitative Meat Species Profiling

It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile m...

Full description

Saved in:
Bibliographic Details
Published in:Foods 2022-06, Vol.11 (13), p.1952
Main Authors: Chia, Sean, Teo, Gavin, Tay, Shi Jie, Loo, Larry Sai Weng, Wan, Corrine, Sim, Lyn Chiin, Yu, Hanry, Walsh, Ian, Pang, Kuin Tian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3
cites cdi_FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3
container_end_page
container_issue 13
container_start_page 1952
container_title Foods
container_volume 11
creator Chia, Sean
Teo, Gavin
Tay, Shi Jie
Loo, Larry Sai Weng
Wan, Corrine
Sim, Lyn Chiin
Yu, Hanry
Walsh, Ian
Pang, Kuin Tian
description It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication.
doi_str_mv 10.3390/foods11131952
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b968a834d2da49eab9f08763ca04e40e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b968a834d2da49eab9f08763ca04e40e</doaj_id><sourcerecordid>2687717905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3</originalsourceid><addsrcrecordid>eNpdkU1r3DAURUVpacI0y-4N3XTjRl-WpU1hCG0ykJKEtGvxLD9NNHgsV5ID-fd1OiF0qo3Ee4fDRZeQj4x-EcLQcx9jnxljgpmGvyGnXFBZa9bot_-8T8hZzju6HMOEFvw9ORGNprJV6pRcrcdqMxbcJijhEavL4cnFfXDVeppSBPdQ-ZiquxnGEsoB-YFQqvsJXcBc3abowxDG7QfyzsOQ8ezlXpFf37_9vLiqr28uNxfr69oJrUvdcNa7JYmmHRWKSgDVcqE7wzsJGhYIGq-U0BRbj0idl4zpvvPMAPimEyuyOXj7CDs7pbCH9GQjBPt3ENPWQirBDWg7ozRoIXvegzQInfFUt0o4oBIlxcX19eCa5m6PvcOxJBiOpMebMTzYbXy0hquGL7lX5POLIMXfM-Zi9yE7HAYYMc7ZcqXblrWGNgv66T90F-c0Ll_1TCmqWqb0QtUHyqWYc0L_GoZR-1y5Papc_AEwVp2m</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686067168</pqid></control><display><type>article</type><title>An Integrative Glycomic Approach for Quantitative Meat Species Profiling</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Chia, Sean ; Teo, Gavin ; Tay, Shi Jie ; Loo, Larry Sai Weng ; Wan, Corrine ; Sim, Lyn Chiin ; Yu, Hanry ; Walsh, Ian ; Pang, Kuin Tian</creator><creatorcontrib>Chia, Sean ; Teo, Gavin ; Tay, Shi Jie ; Loo, Larry Sai Weng ; Wan, Corrine ; Sim, Lyn Chiin ; Yu, Hanry ; Walsh, Ian ; Pang, Kuin Tian</creatorcontrib><description>It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication.</description><identifier>ISSN: 2304-8158</identifier><identifier>EISSN: 2304-8158</identifier><identifier>DOI: 10.3390/foods11131952</identifier><identifier>PMID: 35804766</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Beef ; Biotechnology ; Chickens ; Food ; Food industry ; Food science ; Fraud ; Galactose ; Glycan ; glycomic ; Glycosylation ; Ions ; Liquid chromatography ; Mannose ; Mass spectrometry ; Mass spectroscopy ; Meat ; meat species ; N-glycan ; Nitrogen ; O-glycan ; Pork ; Principal components analysis ; Proteins ; Quantitative analysis ; Software ; Species ; Workflow</subject><ispartof>Foods, 2022-06, Vol.11 (13), p.1952</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3</citedby><cites>FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3</cites><orcidid>0000-0001-8905-8695 ; 0000-0002-3998-3556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2686067168/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2686067168?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Chia, Sean</creatorcontrib><creatorcontrib>Teo, Gavin</creatorcontrib><creatorcontrib>Tay, Shi Jie</creatorcontrib><creatorcontrib>Loo, Larry Sai Weng</creatorcontrib><creatorcontrib>Wan, Corrine</creatorcontrib><creatorcontrib>Sim, Lyn Chiin</creatorcontrib><creatorcontrib>Yu, Hanry</creatorcontrib><creatorcontrib>Walsh, Ian</creatorcontrib><creatorcontrib>Pang, Kuin Tian</creatorcontrib><title>An Integrative Glycomic Approach for Quantitative Meat Species Profiling</title><title>Foods</title><description>It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication.</description><subject>Acids</subject><subject>Beef</subject><subject>Biotechnology</subject><subject>Chickens</subject><subject>Food</subject><subject>Food industry</subject><subject>Food science</subject><subject>Fraud</subject><subject>Galactose</subject><subject>Glycan</subject><subject>glycomic</subject><subject>Glycosylation</subject><subject>Ions</subject><subject>Liquid chromatography</subject><subject>Mannose</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Meat</subject><subject>meat species</subject><subject>N-glycan</subject><subject>Nitrogen</subject><subject>O-glycan</subject><subject>Pork</subject><subject>Principal components analysis</subject><subject>Proteins</subject><subject>Quantitative analysis</subject><subject>Software</subject><subject>Species</subject><subject>Workflow</subject><issn>2304-8158</issn><issn>2304-8158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1r3DAURUVpacI0y-4N3XTjRl-WpU1hCG0ykJKEtGvxLD9NNHgsV5ID-fd1OiF0qo3Ee4fDRZeQj4x-EcLQcx9jnxljgpmGvyGnXFBZa9bot_-8T8hZzju6HMOEFvw9ORGNprJV6pRcrcdqMxbcJijhEavL4cnFfXDVeppSBPdQ-ZiquxnGEsoB-YFQqvsJXcBc3abowxDG7QfyzsOQ8ezlXpFf37_9vLiqr28uNxfr69oJrUvdcNa7JYmmHRWKSgDVcqE7wzsJGhYIGq-U0BRbj0idl4zpvvPMAPimEyuyOXj7CDs7pbCH9GQjBPt3ENPWQirBDWg7ozRoIXvegzQInfFUt0o4oBIlxcX19eCa5m6PvcOxJBiOpMebMTzYbXy0hquGL7lX5POLIMXfM-Zi9yE7HAYYMc7ZcqXblrWGNgv66T90F-c0Ll_1TCmqWqb0QtUHyqWYc0L_GoZR-1y5Papc_AEwVp2m</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Chia, Sean</creator><creator>Teo, Gavin</creator><creator>Tay, Shi Jie</creator><creator>Loo, Larry Sai Weng</creator><creator>Wan, Corrine</creator><creator>Sim, Lyn Chiin</creator><creator>Yu, Hanry</creator><creator>Walsh, Ian</creator><creator>Pang, Kuin Tian</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8905-8695</orcidid><orcidid>https://orcid.org/0000-0002-3998-3556</orcidid></search><sort><creationdate>20220630</creationdate><title>An Integrative Glycomic Approach for Quantitative Meat Species Profiling</title><author>Chia, Sean ; Teo, Gavin ; Tay, Shi Jie ; Loo, Larry Sai Weng ; Wan, Corrine ; Sim, Lyn Chiin ; Yu, Hanry ; Walsh, Ian ; Pang, Kuin Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Beef</topic><topic>Biotechnology</topic><topic>Chickens</topic><topic>Food</topic><topic>Food industry</topic><topic>Food science</topic><topic>Fraud</topic><topic>Galactose</topic><topic>Glycan</topic><topic>glycomic</topic><topic>Glycosylation</topic><topic>Ions</topic><topic>Liquid chromatography</topic><topic>Mannose</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Meat</topic><topic>meat species</topic><topic>N-glycan</topic><topic>Nitrogen</topic><topic>O-glycan</topic><topic>Pork</topic><topic>Principal components analysis</topic><topic>Proteins</topic><topic>Quantitative analysis</topic><topic>Software</topic><topic>Species</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chia, Sean</creatorcontrib><creatorcontrib>Teo, Gavin</creatorcontrib><creatorcontrib>Tay, Shi Jie</creatorcontrib><creatorcontrib>Loo, Larry Sai Weng</creatorcontrib><creatorcontrib>Wan, Corrine</creatorcontrib><creatorcontrib>Sim, Lyn Chiin</creatorcontrib><creatorcontrib>Yu, Hanry</creatorcontrib><creatorcontrib>Walsh, Ian</creatorcontrib><creatorcontrib>Pang, Kuin Tian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Foods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chia, Sean</au><au>Teo, Gavin</au><au>Tay, Shi Jie</au><au>Loo, Larry Sai Weng</au><au>Wan, Corrine</au><au>Sim, Lyn Chiin</au><au>Yu, Hanry</au><au>Walsh, Ian</au><au>Pang, Kuin Tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrative Glycomic Approach for Quantitative Meat Species Profiling</atitle><jtitle>Foods</jtitle><date>2022-06-30</date><risdate>2022</risdate><volume>11</volume><issue>13</issue><spage>1952</spage><pages>1952-</pages><issn>2304-8158</issn><eissn>2304-8158</eissn><abstract>It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35804766</pmid><doi>10.3390/foods11131952</doi><orcidid>https://orcid.org/0000-0001-8905-8695</orcidid><orcidid>https://orcid.org/0000-0002-3998-3556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2304-8158
ispartof Foods, 2022-06, Vol.11 (13), p.1952
issn 2304-8158
2304-8158
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b968a834d2da49eab9f08763ca04e40e
source Publicly Available Content Database; PubMed Central
subjects Acids
Beef
Biotechnology
Chickens
Food
Food industry
Food science
Fraud
Galactose
Glycan
glycomic
Glycosylation
Ions
Liquid chromatography
Mannose
Mass spectrometry
Mass spectroscopy
Meat
meat species
N-glycan
Nitrogen
O-glycan
Pork
Principal components analysis
Proteins
Quantitative analysis
Software
Species
Workflow
title An Integrative Glycomic Approach for Quantitative Meat Species Profiling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrative%20Glycomic%20Approach%20for%20Quantitative%20Meat%20Species%20Profiling&rft.jtitle=Foods&rft.au=Chia,%20Sean&rft.date=2022-06-30&rft.volume=11&rft.issue=13&rft.spage=1952&rft.pages=1952-&rft.issn=2304-8158&rft.eissn=2304-8158&rft_id=info:doi/10.3390/foods11131952&rft_dat=%3Cproquest_doaj_%3E2687717905%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2686067168&rft_id=info:pmid/35804766&rfr_iscdi=true