Loading…
An Integrative Glycomic Approach for Quantitative Meat Species Profiling
It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile m...
Saved in:
Published in: | Foods 2022-06, Vol.11 (13), p.1952 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3 |
container_end_page | |
container_issue | 13 |
container_start_page | 1952 |
container_title | Foods |
container_volume | 11 |
creator | Chia, Sean Teo, Gavin Tay, Shi Jie Loo, Larry Sai Weng Wan, Corrine Sim, Lyn Chiin Yu, Hanry Walsh, Ian Pang, Kuin Tian |
description | It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication. |
doi_str_mv | 10.3390/foods11131952 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b968a834d2da49eab9f08763ca04e40e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b968a834d2da49eab9f08763ca04e40e</doaj_id><sourcerecordid>2687717905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3</originalsourceid><addsrcrecordid>eNpdkU1r3DAURUVpacI0y-4N3XTjRl-WpU1hCG0ykJKEtGvxLD9NNHgsV5ID-fd1OiF0qo3Ee4fDRZeQj4x-EcLQcx9jnxljgpmGvyGnXFBZa9bot_-8T8hZzju6HMOEFvw9ORGNprJV6pRcrcdqMxbcJijhEavL4cnFfXDVeppSBPdQ-ZiquxnGEsoB-YFQqvsJXcBc3abowxDG7QfyzsOQ8ezlXpFf37_9vLiqr28uNxfr69oJrUvdcNa7JYmmHRWKSgDVcqE7wzsJGhYIGq-U0BRbj0idl4zpvvPMAPimEyuyOXj7CDs7pbCH9GQjBPt3ENPWQirBDWg7ozRoIXvegzQInfFUt0o4oBIlxcX19eCa5m6PvcOxJBiOpMebMTzYbXy0hquGL7lX5POLIMXfM-Zi9yE7HAYYMc7ZcqXblrWGNgv66T90F-c0Ll_1TCmqWqb0QtUHyqWYc0L_GoZR-1y5Papc_AEwVp2m</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686067168</pqid></control><display><type>article</type><title>An Integrative Glycomic Approach for Quantitative Meat Species Profiling</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Chia, Sean ; Teo, Gavin ; Tay, Shi Jie ; Loo, Larry Sai Weng ; Wan, Corrine ; Sim, Lyn Chiin ; Yu, Hanry ; Walsh, Ian ; Pang, Kuin Tian</creator><creatorcontrib>Chia, Sean ; Teo, Gavin ; Tay, Shi Jie ; Loo, Larry Sai Weng ; Wan, Corrine ; Sim, Lyn Chiin ; Yu, Hanry ; Walsh, Ian ; Pang, Kuin Tian</creatorcontrib><description>It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication.</description><identifier>ISSN: 2304-8158</identifier><identifier>EISSN: 2304-8158</identifier><identifier>DOI: 10.3390/foods11131952</identifier><identifier>PMID: 35804766</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Beef ; Biotechnology ; Chickens ; Food ; Food industry ; Food science ; Fraud ; Galactose ; Glycan ; glycomic ; Glycosylation ; Ions ; Liquid chromatography ; Mannose ; Mass spectrometry ; Mass spectroscopy ; Meat ; meat species ; N-glycan ; Nitrogen ; O-glycan ; Pork ; Principal components analysis ; Proteins ; Quantitative analysis ; Software ; Species ; Workflow</subject><ispartof>Foods, 2022-06, Vol.11 (13), p.1952</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3</citedby><cites>FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3</cites><orcidid>0000-0001-8905-8695 ; 0000-0002-3998-3556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2686067168/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2686067168?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Chia, Sean</creatorcontrib><creatorcontrib>Teo, Gavin</creatorcontrib><creatorcontrib>Tay, Shi Jie</creatorcontrib><creatorcontrib>Loo, Larry Sai Weng</creatorcontrib><creatorcontrib>Wan, Corrine</creatorcontrib><creatorcontrib>Sim, Lyn Chiin</creatorcontrib><creatorcontrib>Yu, Hanry</creatorcontrib><creatorcontrib>Walsh, Ian</creatorcontrib><creatorcontrib>Pang, Kuin Tian</creatorcontrib><title>An Integrative Glycomic Approach for Quantitative Meat Species Profiling</title><title>Foods</title><description>It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication.</description><subject>Acids</subject><subject>Beef</subject><subject>Biotechnology</subject><subject>Chickens</subject><subject>Food</subject><subject>Food industry</subject><subject>Food science</subject><subject>Fraud</subject><subject>Galactose</subject><subject>Glycan</subject><subject>glycomic</subject><subject>Glycosylation</subject><subject>Ions</subject><subject>Liquid chromatography</subject><subject>Mannose</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Meat</subject><subject>meat species</subject><subject>N-glycan</subject><subject>Nitrogen</subject><subject>O-glycan</subject><subject>Pork</subject><subject>Principal components analysis</subject><subject>Proteins</subject><subject>Quantitative analysis</subject><subject>Software</subject><subject>Species</subject><subject>Workflow</subject><issn>2304-8158</issn><issn>2304-8158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1r3DAURUVpacI0y-4N3XTjRl-WpU1hCG0ykJKEtGvxLD9NNHgsV5ID-fd1OiF0qo3Ee4fDRZeQj4x-EcLQcx9jnxljgpmGvyGnXFBZa9bot_-8T8hZzju6HMOEFvw9ORGNprJV6pRcrcdqMxbcJijhEavL4cnFfXDVeppSBPdQ-ZiquxnGEsoB-YFQqvsJXcBc3abowxDG7QfyzsOQ8ezlXpFf37_9vLiqr28uNxfr69oJrUvdcNa7JYmmHRWKSgDVcqE7wzsJGhYIGq-U0BRbj0idl4zpvvPMAPimEyuyOXj7CDs7pbCH9GQjBPt3ENPWQirBDWg7ozRoIXvegzQInfFUt0o4oBIlxcX19eCa5m6PvcOxJBiOpMebMTzYbXy0hquGL7lX5POLIMXfM-Zi9yE7HAYYMc7ZcqXblrWGNgv66T90F-c0Ll_1TCmqWqb0QtUHyqWYc0L_GoZR-1y5Papc_AEwVp2m</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Chia, Sean</creator><creator>Teo, Gavin</creator><creator>Tay, Shi Jie</creator><creator>Loo, Larry Sai Weng</creator><creator>Wan, Corrine</creator><creator>Sim, Lyn Chiin</creator><creator>Yu, Hanry</creator><creator>Walsh, Ian</creator><creator>Pang, Kuin Tian</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8905-8695</orcidid><orcidid>https://orcid.org/0000-0002-3998-3556</orcidid></search><sort><creationdate>20220630</creationdate><title>An Integrative Glycomic Approach for Quantitative Meat Species Profiling</title><author>Chia, Sean ; Teo, Gavin ; Tay, Shi Jie ; Loo, Larry Sai Weng ; Wan, Corrine ; Sim, Lyn Chiin ; Yu, Hanry ; Walsh, Ian ; Pang, Kuin Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Beef</topic><topic>Biotechnology</topic><topic>Chickens</topic><topic>Food</topic><topic>Food industry</topic><topic>Food science</topic><topic>Fraud</topic><topic>Galactose</topic><topic>Glycan</topic><topic>glycomic</topic><topic>Glycosylation</topic><topic>Ions</topic><topic>Liquid chromatography</topic><topic>Mannose</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Meat</topic><topic>meat species</topic><topic>N-glycan</topic><topic>Nitrogen</topic><topic>O-glycan</topic><topic>Pork</topic><topic>Principal components analysis</topic><topic>Proteins</topic><topic>Quantitative analysis</topic><topic>Software</topic><topic>Species</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chia, Sean</creatorcontrib><creatorcontrib>Teo, Gavin</creatorcontrib><creatorcontrib>Tay, Shi Jie</creatorcontrib><creatorcontrib>Loo, Larry Sai Weng</creatorcontrib><creatorcontrib>Wan, Corrine</creatorcontrib><creatorcontrib>Sim, Lyn Chiin</creatorcontrib><creatorcontrib>Yu, Hanry</creatorcontrib><creatorcontrib>Walsh, Ian</creatorcontrib><creatorcontrib>Pang, Kuin Tian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Foods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chia, Sean</au><au>Teo, Gavin</au><au>Tay, Shi Jie</au><au>Loo, Larry Sai Weng</au><au>Wan, Corrine</au><au>Sim, Lyn Chiin</au><au>Yu, Hanry</au><au>Walsh, Ian</au><au>Pang, Kuin Tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrative Glycomic Approach for Quantitative Meat Species Profiling</atitle><jtitle>Foods</jtitle><date>2022-06-30</date><risdate>2022</risdate><volume>11</volume><issue>13</issue><spage>1952</spage><pages>1952-</pages><issn>2304-8158</issn><eissn>2304-8158</eissn><abstract>It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35804766</pmid><doi>10.3390/foods11131952</doi><orcidid>https://orcid.org/0000-0001-8905-8695</orcidid><orcidid>https://orcid.org/0000-0002-3998-3556</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2304-8158 |
ispartof | Foods, 2022-06, Vol.11 (13), p.1952 |
issn | 2304-8158 2304-8158 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b968a834d2da49eab9f08763ca04e40e |
source | Publicly Available Content Database; PubMed Central |
subjects | Acids Beef Biotechnology Chickens Food Food industry Food science Fraud Galactose Glycan glycomic Glycosylation Ions Liquid chromatography Mannose Mass spectrometry Mass spectroscopy Meat meat species N-glycan Nitrogen O-glycan Pork Principal components analysis Proteins Quantitative analysis Software Species Workflow |
title | An Integrative Glycomic Approach for Quantitative Meat Species Profiling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrative%20Glycomic%20Approach%20for%20Quantitative%20Meat%20Species%20Profiling&rft.jtitle=Foods&rft.au=Chia,%20Sean&rft.date=2022-06-30&rft.volume=11&rft.issue=13&rft.spage=1952&rft.pages=1952-&rft.issn=2304-8158&rft.eissn=2304-8158&rft_id=info:doi/10.3390/foods11131952&rft_dat=%3Cproquest_doaj_%3E2687717905%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-521dc00980b03604aa67238b92b4a8ac38a5f66380e7fee0cf4118dbf19aaf5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2686067168&rft_id=info:pmid/35804766&rfr_iscdi=true |