Loading…

Modelling mussel (Mytilus spp.) microplastic accumulation

Microplastics (MPs) are a contaminant of growing concern due to their widespread distribution and interactions with marine species, such as filter feeders. To investigate the MPs accumulation in wild and cultured mussels, a dynamic energy budget (DEB) model was developed and validated with the avail...

Full description

Saved in:
Bibliographic Details
Published in:Ocean science 2020-08, Vol.16 (4), p.927-949
Main Authors: Stamataki, Natalia, Hatzonikolakis, Yannis, Tsiaras, Kostas, Tsangaris, Catherine, Petihakis, George, Sofianos, Sarantis, Triantafyllou, George
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3
cites cdi_FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3
container_end_page 949
container_issue 4
container_start_page 927
container_title Ocean science
container_volume 16
creator Stamataki, Natalia
Hatzonikolakis, Yannis
Tsiaras, Kostas
Tsangaris, Catherine
Petihakis, George
Sofianos, Sarantis
Triantafyllou, George
description Microplastics (MPs) are a contaminant of growing concern due to their widespread distribution and interactions with marine species, such as filter feeders. To investigate the MPs accumulation in wild and cultured mussels, a dynamic energy budget (DEB) model was developed and validated with the available field data of Mytilus edulis (M. edulis, wild) from the North Sea and Mytilus galloprovincialis (M. galloprovincialis, cultured) from the northern Ionian Sea. Towards a generic DEB model, the site-specific model parameter, half-saturation coefficient (Xk), was applied as a power function of food density for the cultured mussel, while for the wild mussel it was calibrated to a constant value. The DEB-accumulation model simulated the uptake and excretion rate of MPs, taking into account environmental characteristics (temperature and chlorophyll a). An accumulation of MPs equal to 0.53 particles per individual (fresh tissue mass 1.9 g) and 0.91 particles per individual (fresh tissue mass 3.3 g) was simulated for the wild and cultured mussel after 4 and 1 years respectively, in agreement with the field data. The inverse experiments investigating the depuration time of the wild and cultured mussel in a clean-from-MPs environment showed a 90 % removal of MPs load after 2.5 and 12 d respectively. Furthermore, sensitivity tests on model parameters and forcing functions highlighted that besides MPs concentration, the accumulation is highly dependent on temperature and chlorophyll a of the surrounding environment. For this reason, an empirical equation was found, directly relating the environmental concentration of MPs, with the seawater temperature, chlorophyll a, and the mussel's soft tissue MPs load.
doi_str_mv 10.5194/os-16-927-2020
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b97ac47f95db487eb3a65edfcf0868b2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631426606</galeid><doaj_id>oai_doaj_org_article_b97ac47f95db487eb3a65edfcf0868b2</doaj_id><sourcerecordid>A631426606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3</originalsourceid><addsrcrecordid>eNptUUlr3TAYNCWBZum1Z0MvycEv2pdjCF0eJBSa5Cw-a3noYVuOZEPz76MkpW0g6CDxMTPfaKZpPmO04Vizi1Q6LDpNZEcQQR-aI6ww6ZDU5OC_98fmuJQ9QgwTio8afZOcH4Y47dpxLcUP7dnN4xKHtbRlnjfn7RhtTvMAZYm2BWvXcR1giWk6bQ4DDMV_-nOfNPffvt5d_eiuf37fXl1ed5ZJtnQ91ooEFJjGgkkgknOlvOMOqKJA-sAF55664GVvUaiuHPRCMmuRhMqkJ832Vdcl2Js5xxHyo0kQzcsg5Z2BXM0N3vRaQt0aNHc9U9L3FAT3LtiAlFA9qVpfXrXmnB5WXxazT2ueqn1DGNGCK8r1P9QOqmicQloy2DEWay4FxYwIgURFbd5B1eN8zSxNPsQ6f0M4f0OomMX_XnZQczfb21_vitfwS8k-_P04Rua5bZOKwcLUts1z2_QJPtmaDQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429658359</pqid></control><display><type>article</type><title>Modelling mussel (Mytilus spp.) microplastic accumulation</title><source>Publicly Available Content Database</source><creator>Stamataki, Natalia ; Hatzonikolakis, Yannis ; Tsiaras, Kostas ; Tsangaris, Catherine ; Petihakis, George ; Sofianos, Sarantis ; Triantafyllou, George</creator><creatorcontrib>Stamataki, Natalia ; Hatzonikolakis, Yannis ; Tsiaras, Kostas ; Tsangaris, Catherine ; Petihakis, George ; Sofianos, Sarantis ; Triantafyllou, George</creatorcontrib><description>Microplastics (MPs) are a contaminant of growing concern due to their widespread distribution and interactions with marine species, such as filter feeders. To investigate the MPs accumulation in wild and cultured mussels, a dynamic energy budget (DEB) model was developed and validated with the available field data of Mytilus edulis (M. edulis, wild) from the North Sea and Mytilus galloprovincialis (M. galloprovincialis, cultured) from the northern Ionian Sea. Towards a generic DEB model, the site-specific model parameter, half-saturation coefficient (Xk), was applied as a power function of food density for the cultured mussel, while for the wild mussel it was calibrated to a constant value. The DEB-accumulation model simulated the uptake and excretion rate of MPs, taking into account environmental characteristics (temperature and chlorophyll a). An accumulation of MPs equal to 0.53 particles per individual (fresh tissue mass 1.9 g) and 0.91 particles per individual (fresh tissue mass 3.3 g) was simulated for the wild and cultured mussel after 4 and 1 years respectively, in agreement with the field data. The inverse experiments investigating the depuration time of the wild and cultured mussel in a clean-from-MPs environment showed a 90 % removal of MPs load after 2.5 and 12 d respectively. Furthermore, sensitivity tests on model parameters and forcing functions highlighted that besides MPs concentration, the accumulation is highly dependent on temperature and chlorophyll a of the surrounding environment. For this reason, an empirical equation was found, directly relating the environmental concentration of MPs, with the seawater temperature, chlorophyll a, and the mussel's soft tissue MPs load.</description><identifier>ISSN: 1812-0792</identifier><identifier>ISSN: 1812-0784</identifier><identifier>EISSN: 1812-0792</identifier><identifier>DOI: 10.5194/os-16-927-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Accumulation ; Analysis ; Chlorophyll ; Chlorophyll a ; Climate change ; Coasts ; Computer simulation ; Contaminants ; Depuration ; Empirical equations ; Energy budget ; Excretion ; Feeders ; Filter feeders ; Geographical distribution ; Laboratories ; Marine molluscs ; Mathematical models ; Microplastics ; Model testing ; Mollusks ; Mussels ; Mytilus galloprovincialis ; Parameter sensitivity ; Political aspects ; Saturation ; Seawater ; Self purification ; Soft tissues ; Studies ; Temperature ; Temperature dependence ; Tissue ; Tissues ; Uptake</subject><ispartof>Ocean science, 2020-08, Vol.16 (4), p.927-949</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3</citedby><cites>FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3</cites><orcidid>0000-0002-4290-3588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2429658359/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2429658359?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Stamataki, Natalia</creatorcontrib><creatorcontrib>Hatzonikolakis, Yannis</creatorcontrib><creatorcontrib>Tsiaras, Kostas</creatorcontrib><creatorcontrib>Tsangaris, Catherine</creatorcontrib><creatorcontrib>Petihakis, George</creatorcontrib><creatorcontrib>Sofianos, Sarantis</creatorcontrib><creatorcontrib>Triantafyllou, George</creatorcontrib><title>Modelling mussel (Mytilus spp.) microplastic accumulation</title><title>Ocean science</title><description>Microplastics (MPs) are a contaminant of growing concern due to their widespread distribution and interactions with marine species, such as filter feeders. To investigate the MPs accumulation in wild and cultured mussels, a dynamic energy budget (DEB) model was developed and validated with the available field data of Mytilus edulis (M. edulis, wild) from the North Sea and Mytilus galloprovincialis (M. galloprovincialis, cultured) from the northern Ionian Sea. Towards a generic DEB model, the site-specific model parameter, half-saturation coefficient (Xk), was applied as a power function of food density for the cultured mussel, while for the wild mussel it was calibrated to a constant value. The DEB-accumulation model simulated the uptake and excretion rate of MPs, taking into account environmental characteristics (temperature and chlorophyll a). An accumulation of MPs equal to 0.53 particles per individual (fresh tissue mass 1.9 g) and 0.91 particles per individual (fresh tissue mass 3.3 g) was simulated for the wild and cultured mussel after 4 and 1 years respectively, in agreement with the field data. The inverse experiments investigating the depuration time of the wild and cultured mussel in a clean-from-MPs environment showed a 90 % removal of MPs load after 2.5 and 12 d respectively. Furthermore, sensitivity tests on model parameters and forcing functions highlighted that besides MPs concentration, the accumulation is highly dependent on temperature and chlorophyll a of the surrounding environment. For this reason, an empirical equation was found, directly relating the environmental concentration of MPs, with the seawater temperature, chlorophyll a, and the mussel's soft tissue MPs load.</description><subject>Accumulation</subject><subject>Analysis</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Climate change</subject><subject>Coasts</subject><subject>Computer simulation</subject><subject>Contaminants</subject><subject>Depuration</subject><subject>Empirical equations</subject><subject>Energy budget</subject><subject>Excretion</subject><subject>Feeders</subject><subject>Filter feeders</subject><subject>Geographical distribution</subject><subject>Laboratories</subject><subject>Marine molluscs</subject><subject>Mathematical models</subject><subject>Microplastics</subject><subject>Model testing</subject><subject>Mollusks</subject><subject>Mussels</subject><subject>Mytilus galloprovincialis</subject><subject>Parameter sensitivity</subject><subject>Political aspects</subject><subject>Saturation</subject><subject>Seawater</subject><subject>Self purification</subject><subject>Soft tissues</subject><subject>Studies</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Tissue</subject><subject>Tissues</subject><subject>Uptake</subject><issn>1812-0792</issn><issn>1812-0784</issn><issn>1812-0792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUUlr3TAYNCWBZum1Z0MvycEv2pdjCF0eJBSa5Cw-a3noYVuOZEPz76MkpW0g6CDxMTPfaKZpPmO04Vizi1Q6LDpNZEcQQR-aI6ww6ZDU5OC_98fmuJQ9QgwTio8afZOcH4Y47dpxLcUP7dnN4xKHtbRlnjfn7RhtTvMAZYm2BWvXcR1giWk6bQ4DDMV_-nOfNPffvt5d_eiuf37fXl1ed5ZJtnQ91ooEFJjGgkkgknOlvOMOqKJA-sAF55664GVvUaiuHPRCMmuRhMqkJ832Vdcl2Js5xxHyo0kQzcsg5Z2BXM0N3vRaQt0aNHc9U9L3FAT3LtiAlFA9qVpfXrXmnB5WXxazT2ueqn1DGNGCK8r1P9QOqmicQloy2DEWay4FxYwIgURFbd5B1eN8zSxNPsQ6f0M4f0OomMX_XnZQczfb21_vitfwS8k-_P04Rua5bZOKwcLUts1z2_QJPtmaDQ</recordid><startdate>20200803</startdate><enddate>20200803</enddate><creator>Stamataki, Natalia</creator><creator>Hatzonikolakis, Yannis</creator><creator>Tsiaras, Kostas</creator><creator>Tsangaris, Catherine</creator><creator>Petihakis, George</creator><creator>Sofianos, Sarantis</creator><creator>Triantafyllou, George</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H99</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4290-3588</orcidid></search><sort><creationdate>20200803</creationdate><title>Modelling mussel (Mytilus spp.) microplastic accumulation</title><author>Stamataki, Natalia ; Hatzonikolakis, Yannis ; Tsiaras, Kostas ; Tsangaris, Catherine ; Petihakis, George ; Sofianos, Sarantis ; Triantafyllou, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Analysis</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Climate change</topic><topic>Coasts</topic><topic>Computer simulation</topic><topic>Contaminants</topic><topic>Depuration</topic><topic>Empirical equations</topic><topic>Energy budget</topic><topic>Excretion</topic><topic>Feeders</topic><topic>Filter feeders</topic><topic>Geographical distribution</topic><topic>Laboratories</topic><topic>Marine molluscs</topic><topic>Mathematical models</topic><topic>Microplastics</topic><topic>Model testing</topic><topic>Mollusks</topic><topic>Mussels</topic><topic>Mytilus galloprovincialis</topic><topic>Parameter sensitivity</topic><topic>Political aspects</topic><topic>Saturation</topic><topic>Seawater</topic><topic>Self purification</topic><topic>Soft tissues</topic><topic>Studies</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Tissue</topic><topic>Tissues</topic><topic>Uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stamataki, Natalia</creatorcontrib><creatorcontrib>Hatzonikolakis, Yannis</creatorcontrib><creatorcontrib>Tsiaras, Kostas</creatorcontrib><creatorcontrib>Tsangaris, Catherine</creatorcontrib><creatorcontrib>Petihakis, George</creatorcontrib><creatorcontrib>Sofianos, Sarantis</creatorcontrib><creatorcontrib>Triantafyllou, George</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Ocean science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stamataki, Natalia</au><au>Hatzonikolakis, Yannis</au><au>Tsiaras, Kostas</au><au>Tsangaris, Catherine</au><au>Petihakis, George</au><au>Sofianos, Sarantis</au><au>Triantafyllou, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling mussel (Mytilus spp.) microplastic accumulation</atitle><jtitle>Ocean science</jtitle><date>2020-08-03</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>927</spage><epage>949</epage><pages>927-949</pages><issn>1812-0792</issn><issn>1812-0784</issn><eissn>1812-0792</eissn><abstract>Microplastics (MPs) are a contaminant of growing concern due to their widespread distribution and interactions with marine species, such as filter feeders. To investigate the MPs accumulation in wild and cultured mussels, a dynamic energy budget (DEB) model was developed and validated with the available field data of Mytilus edulis (M. edulis, wild) from the North Sea and Mytilus galloprovincialis (M. galloprovincialis, cultured) from the northern Ionian Sea. Towards a generic DEB model, the site-specific model parameter, half-saturation coefficient (Xk), was applied as a power function of food density for the cultured mussel, while for the wild mussel it was calibrated to a constant value. The DEB-accumulation model simulated the uptake and excretion rate of MPs, taking into account environmental characteristics (temperature and chlorophyll a). An accumulation of MPs equal to 0.53 particles per individual (fresh tissue mass 1.9 g) and 0.91 particles per individual (fresh tissue mass 3.3 g) was simulated for the wild and cultured mussel after 4 and 1 years respectively, in agreement with the field data. The inverse experiments investigating the depuration time of the wild and cultured mussel in a clean-from-MPs environment showed a 90 % removal of MPs load after 2.5 and 12 d respectively. Furthermore, sensitivity tests on model parameters and forcing functions highlighted that besides MPs concentration, the accumulation is highly dependent on temperature and chlorophyll a of the surrounding environment. For this reason, an empirical equation was found, directly relating the environmental concentration of MPs, with the seawater temperature, chlorophyll a, and the mussel's soft tissue MPs load.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/os-16-927-2020</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4290-3588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1812-0792
ispartof Ocean science, 2020-08, Vol.16 (4), p.927-949
issn 1812-0792
1812-0784
1812-0792
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b97ac47f95db487eb3a65edfcf0868b2
source Publicly Available Content Database
subjects Accumulation
Analysis
Chlorophyll
Chlorophyll a
Climate change
Coasts
Computer simulation
Contaminants
Depuration
Empirical equations
Energy budget
Excretion
Feeders
Filter feeders
Geographical distribution
Laboratories
Marine molluscs
Mathematical models
Microplastics
Model testing
Mollusks
Mussels
Mytilus galloprovincialis
Parameter sensitivity
Political aspects
Saturation
Seawater
Self purification
Soft tissues
Studies
Temperature
Temperature dependence
Tissue
Tissues
Uptake
title Modelling mussel (Mytilus spp.) microplastic accumulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20mussel%20(Mytilus%20spp.)%20microplastic%20accumulation&rft.jtitle=Ocean%20science&rft.au=Stamataki,%20Natalia&rft.date=2020-08-03&rft.volume=16&rft.issue=4&rft.spage=927&rft.epage=949&rft.pages=927-949&rft.issn=1812-0792&rft.eissn=1812-0792&rft_id=info:doi/10.5194/os-16-927-2020&rft_dat=%3Cgale_doaj_%3EA631426606%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429658359&rft_id=info:pmid/&rft_galeid=A631426606&rfr_iscdi=true