Loading…
Modelling mussel (Mytilus spp.) microplastic accumulation
Microplastics (MPs) are a contaminant of growing concern due to their widespread distribution and interactions with marine species, such as filter feeders. To investigate the MPs accumulation in wild and cultured mussels, a dynamic energy budget (DEB) model was developed and validated with the avail...
Saved in:
Published in: | Ocean science 2020-08, Vol.16 (4), p.927-949 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3 |
container_end_page | 949 |
container_issue | 4 |
container_start_page | 927 |
container_title | Ocean science |
container_volume | 16 |
creator | Stamataki, Natalia Hatzonikolakis, Yannis Tsiaras, Kostas Tsangaris, Catherine Petihakis, George Sofianos, Sarantis Triantafyllou, George |
description | Microplastics (MPs) are a contaminant of growing concern due to
their widespread distribution and interactions with marine species, such as
filter feeders. To investigate the MPs accumulation in wild and cultured
mussels, a dynamic energy budget (DEB) model was developed and validated
with the available field data of Mytilus edulis (M. edulis, wild) from the North Sea and Mytilus galloprovincialis (M. galloprovincialis,
cultured) from the northern Ionian Sea. Towards a generic DEB model, the
site-specific model parameter, half-saturation coefficient (Xk), was
applied as a power function of food density for the cultured mussel, while
for the wild mussel it was calibrated to a constant value. The
DEB-accumulation model simulated the uptake and excretion rate of MPs,
taking into account environmental characteristics (temperature and
chlorophyll a). An accumulation of MPs equal to 0.53 particles per individual (fresh tissue mass 1.9 g) and 0.91 particles per individual (fresh tissue mass 3.3 g) was simulated for the wild and
cultured mussel after 4 and 1 years respectively, in agreement with the
field data. The inverse experiments investigating the depuration time of the
wild and cultured mussel in a clean-from-MPs environment showed a 90 %
removal of MPs load after 2.5 and 12 d respectively. Furthermore,
sensitivity tests on model parameters and forcing functions highlighted that
besides MPs concentration, the accumulation is highly dependent on
temperature and chlorophyll a of the surrounding environment. For this
reason, an empirical equation was found, directly relating the environmental
concentration of MPs, with the seawater temperature, chlorophyll a, and the
mussel's soft tissue MPs load. |
doi_str_mv | 10.5194/os-16-927-2020 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b97ac47f95db487eb3a65edfcf0868b2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631426606</galeid><doaj_id>oai_doaj_org_article_b97ac47f95db487eb3a65edfcf0868b2</doaj_id><sourcerecordid>A631426606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3</originalsourceid><addsrcrecordid>eNptUUlr3TAYNCWBZum1Z0MvycEv2pdjCF0eJBSa5Cw-a3noYVuOZEPz76MkpW0g6CDxMTPfaKZpPmO04Vizi1Q6LDpNZEcQQR-aI6ww6ZDU5OC_98fmuJQ9QgwTio8afZOcH4Y47dpxLcUP7dnN4xKHtbRlnjfn7RhtTvMAZYm2BWvXcR1giWk6bQ4DDMV_-nOfNPffvt5d_eiuf37fXl1ed5ZJtnQ91ooEFJjGgkkgknOlvOMOqKJA-sAF55664GVvUaiuHPRCMmuRhMqkJ832Vdcl2Js5xxHyo0kQzcsg5Z2BXM0N3vRaQt0aNHc9U9L3FAT3LtiAlFA9qVpfXrXmnB5WXxazT2ueqn1DGNGCK8r1P9QOqmicQloy2DEWay4FxYwIgURFbd5B1eN8zSxNPsQ6f0M4f0OomMX_XnZQczfb21_vitfwS8k-_P04Rua5bZOKwcLUts1z2_QJPtmaDQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429658359</pqid></control><display><type>article</type><title>Modelling mussel (Mytilus spp.) microplastic accumulation</title><source>Publicly Available Content Database</source><creator>Stamataki, Natalia ; Hatzonikolakis, Yannis ; Tsiaras, Kostas ; Tsangaris, Catherine ; Petihakis, George ; Sofianos, Sarantis ; Triantafyllou, George</creator><creatorcontrib>Stamataki, Natalia ; Hatzonikolakis, Yannis ; Tsiaras, Kostas ; Tsangaris, Catherine ; Petihakis, George ; Sofianos, Sarantis ; Triantafyllou, George</creatorcontrib><description>Microplastics (MPs) are a contaminant of growing concern due to
their widespread distribution and interactions with marine species, such as
filter feeders. To investigate the MPs accumulation in wild and cultured
mussels, a dynamic energy budget (DEB) model was developed and validated
with the available field data of Mytilus edulis (M. edulis, wild) from the North Sea and Mytilus galloprovincialis (M. galloprovincialis,
cultured) from the northern Ionian Sea. Towards a generic DEB model, the
site-specific model parameter, half-saturation coefficient (Xk), was
applied as a power function of food density for the cultured mussel, while
for the wild mussel it was calibrated to a constant value. The
DEB-accumulation model simulated the uptake and excretion rate of MPs,
taking into account environmental characteristics (temperature and
chlorophyll a). An accumulation of MPs equal to 0.53 particles per individual (fresh tissue mass 1.9 g) and 0.91 particles per individual (fresh tissue mass 3.3 g) was simulated for the wild and
cultured mussel after 4 and 1 years respectively, in agreement with the
field data. The inverse experiments investigating the depuration time of the
wild and cultured mussel in a clean-from-MPs environment showed a 90 %
removal of MPs load after 2.5 and 12 d respectively. Furthermore,
sensitivity tests on model parameters and forcing functions highlighted that
besides MPs concentration, the accumulation is highly dependent on
temperature and chlorophyll a of the surrounding environment. For this
reason, an empirical equation was found, directly relating the environmental
concentration of MPs, with the seawater temperature, chlorophyll a, and the
mussel's soft tissue MPs load.</description><identifier>ISSN: 1812-0792</identifier><identifier>ISSN: 1812-0784</identifier><identifier>EISSN: 1812-0792</identifier><identifier>DOI: 10.5194/os-16-927-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Accumulation ; Analysis ; Chlorophyll ; Chlorophyll a ; Climate change ; Coasts ; Computer simulation ; Contaminants ; Depuration ; Empirical equations ; Energy budget ; Excretion ; Feeders ; Filter feeders ; Geographical distribution ; Laboratories ; Marine molluscs ; Mathematical models ; Microplastics ; Model testing ; Mollusks ; Mussels ; Mytilus galloprovincialis ; Parameter sensitivity ; Political aspects ; Saturation ; Seawater ; Self purification ; Soft tissues ; Studies ; Temperature ; Temperature dependence ; Tissue ; Tissues ; Uptake</subject><ispartof>Ocean science, 2020-08, Vol.16 (4), p.927-949</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3</citedby><cites>FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3</cites><orcidid>0000-0002-4290-3588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2429658359/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2429658359?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Stamataki, Natalia</creatorcontrib><creatorcontrib>Hatzonikolakis, Yannis</creatorcontrib><creatorcontrib>Tsiaras, Kostas</creatorcontrib><creatorcontrib>Tsangaris, Catherine</creatorcontrib><creatorcontrib>Petihakis, George</creatorcontrib><creatorcontrib>Sofianos, Sarantis</creatorcontrib><creatorcontrib>Triantafyllou, George</creatorcontrib><title>Modelling mussel (Mytilus spp.) microplastic accumulation</title><title>Ocean science</title><description>Microplastics (MPs) are a contaminant of growing concern due to
their widespread distribution and interactions with marine species, such as
filter feeders. To investigate the MPs accumulation in wild and cultured
mussels, a dynamic energy budget (DEB) model was developed and validated
with the available field data of Mytilus edulis (M. edulis, wild) from the North Sea and Mytilus galloprovincialis (M. galloprovincialis,
cultured) from the northern Ionian Sea. Towards a generic DEB model, the
site-specific model parameter, half-saturation coefficient (Xk), was
applied as a power function of food density for the cultured mussel, while
for the wild mussel it was calibrated to a constant value. The
DEB-accumulation model simulated the uptake and excretion rate of MPs,
taking into account environmental characteristics (temperature and
chlorophyll a). An accumulation of MPs equal to 0.53 particles per individual (fresh tissue mass 1.9 g) and 0.91 particles per individual (fresh tissue mass 3.3 g) was simulated for the wild and
cultured mussel after 4 and 1 years respectively, in agreement with the
field data. The inverse experiments investigating the depuration time of the
wild and cultured mussel in a clean-from-MPs environment showed a 90 %
removal of MPs load after 2.5 and 12 d respectively. Furthermore,
sensitivity tests on model parameters and forcing functions highlighted that
besides MPs concentration, the accumulation is highly dependent on
temperature and chlorophyll a of the surrounding environment. For this
reason, an empirical equation was found, directly relating the environmental
concentration of MPs, with the seawater temperature, chlorophyll a, and the
mussel's soft tissue MPs load.</description><subject>Accumulation</subject><subject>Analysis</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Climate change</subject><subject>Coasts</subject><subject>Computer simulation</subject><subject>Contaminants</subject><subject>Depuration</subject><subject>Empirical equations</subject><subject>Energy budget</subject><subject>Excretion</subject><subject>Feeders</subject><subject>Filter feeders</subject><subject>Geographical distribution</subject><subject>Laboratories</subject><subject>Marine molluscs</subject><subject>Mathematical models</subject><subject>Microplastics</subject><subject>Model testing</subject><subject>Mollusks</subject><subject>Mussels</subject><subject>Mytilus galloprovincialis</subject><subject>Parameter sensitivity</subject><subject>Political aspects</subject><subject>Saturation</subject><subject>Seawater</subject><subject>Self purification</subject><subject>Soft tissues</subject><subject>Studies</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Tissue</subject><subject>Tissues</subject><subject>Uptake</subject><issn>1812-0792</issn><issn>1812-0784</issn><issn>1812-0792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUUlr3TAYNCWBZum1Z0MvycEv2pdjCF0eJBSa5Cw-a3noYVuOZEPz76MkpW0g6CDxMTPfaKZpPmO04Vizi1Q6LDpNZEcQQR-aI6ww6ZDU5OC_98fmuJQ9QgwTio8afZOcH4Y47dpxLcUP7dnN4xKHtbRlnjfn7RhtTvMAZYm2BWvXcR1giWk6bQ4DDMV_-nOfNPffvt5d_eiuf37fXl1ed5ZJtnQ91ooEFJjGgkkgknOlvOMOqKJA-sAF55664GVvUaiuHPRCMmuRhMqkJ832Vdcl2Js5xxHyo0kQzcsg5Z2BXM0N3vRaQt0aNHc9U9L3FAT3LtiAlFA9qVpfXrXmnB5WXxazT2ueqn1DGNGCK8r1P9QOqmicQloy2DEWay4FxYwIgURFbd5B1eN8zSxNPsQ6f0M4f0OomMX_XnZQczfb21_vitfwS8k-_P04Rua5bZOKwcLUts1z2_QJPtmaDQ</recordid><startdate>20200803</startdate><enddate>20200803</enddate><creator>Stamataki, Natalia</creator><creator>Hatzonikolakis, Yannis</creator><creator>Tsiaras, Kostas</creator><creator>Tsangaris, Catherine</creator><creator>Petihakis, George</creator><creator>Sofianos, Sarantis</creator><creator>Triantafyllou, George</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H99</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4290-3588</orcidid></search><sort><creationdate>20200803</creationdate><title>Modelling mussel (Mytilus spp.) microplastic accumulation</title><author>Stamataki, Natalia ; Hatzonikolakis, Yannis ; Tsiaras, Kostas ; Tsangaris, Catherine ; Petihakis, George ; Sofianos, Sarantis ; Triantafyllou, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Analysis</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Climate change</topic><topic>Coasts</topic><topic>Computer simulation</topic><topic>Contaminants</topic><topic>Depuration</topic><topic>Empirical equations</topic><topic>Energy budget</topic><topic>Excretion</topic><topic>Feeders</topic><topic>Filter feeders</topic><topic>Geographical distribution</topic><topic>Laboratories</topic><topic>Marine molluscs</topic><topic>Mathematical models</topic><topic>Microplastics</topic><topic>Model testing</topic><topic>Mollusks</topic><topic>Mussels</topic><topic>Mytilus galloprovincialis</topic><topic>Parameter sensitivity</topic><topic>Political aspects</topic><topic>Saturation</topic><topic>Seawater</topic><topic>Self purification</topic><topic>Soft tissues</topic><topic>Studies</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Tissue</topic><topic>Tissues</topic><topic>Uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stamataki, Natalia</creatorcontrib><creatorcontrib>Hatzonikolakis, Yannis</creatorcontrib><creatorcontrib>Tsiaras, Kostas</creatorcontrib><creatorcontrib>Tsangaris, Catherine</creatorcontrib><creatorcontrib>Petihakis, George</creatorcontrib><creatorcontrib>Sofianos, Sarantis</creatorcontrib><creatorcontrib>Triantafyllou, George</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Ocean science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stamataki, Natalia</au><au>Hatzonikolakis, Yannis</au><au>Tsiaras, Kostas</au><au>Tsangaris, Catherine</au><au>Petihakis, George</au><au>Sofianos, Sarantis</au><au>Triantafyllou, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling mussel (Mytilus spp.) microplastic accumulation</atitle><jtitle>Ocean science</jtitle><date>2020-08-03</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>927</spage><epage>949</epage><pages>927-949</pages><issn>1812-0792</issn><issn>1812-0784</issn><eissn>1812-0792</eissn><abstract>Microplastics (MPs) are a contaminant of growing concern due to
their widespread distribution and interactions with marine species, such as
filter feeders. To investigate the MPs accumulation in wild and cultured
mussels, a dynamic energy budget (DEB) model was developed and validated
with the available field data of Mytilus edulis (M. edulis, wild) from the North Sea and Mytilus galloprovincialis (M. galloprovincialis,
cultured) from the northern Ionian Sea. Towards a generic DEB model, the
site-specific model parameter, half-saturation coefficient (Xk), was
applied as a power function of food density for the cultured mussel, while
for the wild mussel it was calibrated to a constant value. The
DEB-accumulation model simulated the uptake and excretion rate of MPs,
taking into account environmental characteristics (temperature and
chlorophyll a). An accumulation of MPs equal to 0.53 particles per individual (fresh tissue mass 1.9 g) and 0.91 particles per individual (fresh tissue mass 3.3 g) was simulated for the wild and
cultured mussel after 4 and 1 years respectively, in agreement with the
field data. The inverse experiments investigating the depuration time of the
wild and cultured mussel in a clean-from-MPs environment showed a 90 %
removal of MPs load after 2.5 and 12 d respectively. Furthermore,
sensitivity tests on model parameters and forcing functions highlighted that
besides MPs concentration, the accumulation is highly dependent on
temperature and chlorophyll a of the surrounding environment. For this
reason, an empirical equation was found, directly relating the environmental
concentration of MPs, with the seawater temperature, chlorophyll a, and the
mussel's soft tissue MPs load.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/os-16-927-2020</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4290-3588</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1812-0792 |
ispartof | Ocean science, 2020-08, Vol.16 (4), p.927-949 |
issn | 1812-0792 1812-0784 1812-0792 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b97ac47f95db487eb3a65edfcf0868b2 |
source | Publicly Available Content Database |
subjects | Accumulation Analysis Chlorophyll Chlorophyll a Climate change Coasts Computer simulation Contaminants Depuration Empirical equations Energy budget Excretion Feeders Filter feeders Geographical distribution Laboratories Marine molluscs Mathematical models Microplastics Model testing Mollusks Mussels Mytilus galloprovincialis Parameter sensitivity Political aspects Saturation Seawater Self purification Soft tissues Studies Temperature Temperature dependence Tissue Tissues Uptake |
title | Modelling mussel (Mytilus spp.) microplastic accumulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20mussel%20(Mytilus%20spp.)%20microplastic%20accumulation&rft.jtitle=Ocean%20science&rft.au=Stamataki,%20Natalia&rft.date=2020-08-03&rft.volume=16&rft.issue=4&rft.spage=927&rft.epage=949&rft.pages=927-949&rft.issn=1812-0792&rft.eissn=1812-0792&rft_id=info:doi/10.5194/os-16-927-2020&rft_dat=%3Cgale_doaj_%3EA631426606%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-b1982f0f491647a275588ed5da383a2bf5655e3dfe7bc0f123dab674cc07a82f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429658359&rft_id=info:pmid/&rft_galeid=A631426606&rfr_iscdi=true |