Loading…

A comparison of implementation strategies for MPC

Four quadratic programming (QP) formulations of model predictive control (MPC) are compared with regards to ease of formulation, memory requirement, and numerical properties. The comparison is based on two example processes: a paper machine model, and a model of the Tennessee Eastman challenge proce...

Full description

Saved in:
Bibliographic Details
Published in:Modeling, identification and control identification and control, 2005, Vol.26 (1), p.39-50
Main Authors: LIE, Bernt, DIEZ, Marta Duenas, HAUGE, Tor Anders
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-c3a1217f113c68b8762105b92bb22b44c7bab1aa5fda154f740d1db0eb29de393
cites cdi_FETCH-LOGICAL-c397t-c3a1217f113c68b8762105b92bb22b44c7bab1aa5fda154f740d1db0eb29de393
container_end_page 50
container_issue 1
container_start_page 39
container_title Modeling, identification and control
container_volume 26
creator LIE, Bernt
DIEZ, Marta Duenas
HAUGE, Tor Anders
description Four quadratic programming (QP) formulations of model predictive control (MPC) are compared with regards to ease of formulation, memory requirement, and numerical properties. The comparison is based on two example processes: a paper machine model, and a model of the Tennessee Eastman challenge process; the number of free variables range from 150-1400. Five commercial QP solvers are compared. Preliminary results indicate that dense solvers still are the most efficient, but sparse solvers hold great promise.
doi_str_mv 10.4173/mic.2005.1.3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b97ce4657d27452a9ced888c978c3b2d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b97ce4657d27452a9ced888c978c3b2d</doaj_id><sourcerecordid>2709773801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-c3a1217f113c68b8762105b92bb22b44c7bab1aa5fda154f740d1db0eb29de393</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EEuVx4wdEQtxI8NpJbB-rikelIjjA2Vo7TuUqiYudHvj3pLSCy640mv12NITcAC1KEPyh97ZglFYFFPyEzEAqmgNn8pTMKOcsF7zi5-QipQ2lDKqSzgjMMxv6LUafwpCFNvP9tnO9G0Yc_aSkMeLo1t6lrA0xe31fXJGzFrvkro_7knw-PX4sXvLV2_NyMV_llisxThOBgWgBuK2lkaJmQCujmDGMmbK0wqABxKptcIrSipI20BjqDFON44pfkuWB2wTc6G30PcZvHdDrXyHEtcY4ets5bZSwrqwr0TBRVgyVdY2U0iohLTesmVi3B9Y2hq-dS6PehF0cpvgaKCslZ1TxyXV_cNkYUoqu_fsKVO8L1lPBel-wBr233x2hmCx2bcTB-vR_UwtVCwr8B5S4eVE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024832093</pqid></control><display><type>article</type><title>A comparison of implementation strategies for MPC</title><source>Publicly Available Content Database</source><creator>LIE, Bernt ; DIEZ, Marta Duenas ; HAUGE, Tor Anders</creator><creatorcontrib>LIE, Bernt ; DIEZ, Marta Duenas ; HAUGE, Tor Anders</creatorcontrib><description>Four quadratic programming (QP) formulations of model predictive control (MPC) are compared with regards to ease of formulation, memory requirement, and numerical properties. The comparison is based on two example processes: a paper machine model, and a model of the Tennessee Eastman challenge process; the number of free variables range from 150-1400. Five commercial QP solvers are compared. Preliminary results indicate that dense solvers still are the most efficient, but sparse solvers hold great promise.</description><identifier>ISSN: 0332-7353</identifier><identifier>EISSN: 1890-1328</identifier><identifier>DOI: 10.4173/mic.2005.1.3</identifier><language>eng</language><publisher>Oslo: Research Council of Norway</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology</subject><ispartof>Modeling, identification and control, 2005, Vol.26 (1), p.39-50</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Norsk Forening for Automatisering (NFA) 2005</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-c3a1217f113c68b8762105b92bb22b44c7bab1aa5fda154f740d1db0eb29de393</citedby><cites>FETCH-LOGICAL-c397t-c3a1217f113c68b8762105b92bb22b44c7bab1aa5fda154f740d1db0eb29de393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1024832093?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16796701$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LIE, Bernt</creatorcontrib><creatorcontrib>DIEZ, Marta Duenas</creatorcontrib><creatorcontrib>HAUGE, Tor Anders</creatorcontrib><title>A comparison of implementation strategies for MPC</title><title>Modeling, identification and control</title><description>Four quadratic programming (QP) formulations of model predictive control (MPC) are compared with regards to ease of formulation, memory requirement, and numerical properties. The comparison is based on two example processes: a paper machine model, and a model of the Tennessee Eastman challenge process; the number of free variables range from 150-1400. Five commercial QP solvers are compared. Preliminary results indicate that dense solvers still are the most efficient, but sparse solvers hold great promise.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><issn>0332-7353</issn><issn>1890-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpFkEtPwzAQhC0EEuVx4wdEQtxI8NpJbB-rikelIjjA2Vo7TuUqiYudHvj3pLSCy640mv12NITcAC1KEPyh97ZglFYFFPyEzEAqmgNn8pTMKOcsF7zi5-QipQ2lDKqSzgjMMxv6LUafwpCFNvP9tnO9G0Yc_aSkMeLo1t6lrA0xe31fXJGzFrvkro_7knw-PX4sXvLV2_NyMV_llisxThOBgWgBuK2lkaJmQCujmDGMmbK0wqABxKptcIrSipI20BjqDFON44pfkuWB2wTc6G30PcZvHdDrXyHEtcY4ets5bZSwrqwr0TBRVgyVdY2U0iohLTesmVi3B9Y2hq-dS6PehF0cpvgaKCslZ1TxyXV_cNkYUoqu_fsKVO8L1lPBel-wBr233x2hmCx2bcTB-vR_UwtVCwr8B5S4eVE</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>LIE, Bernt</creator><creator>DIEZ, Marta Duenas</creator><creator>HAUGE, Tor Anders</creator><general>Research Council of Norway</general><general>Norsk Forening for Automatisering (NFA)</general><general>Norwegian Society of Automatic Control</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>2005</creationdate><title>A comparison of implementation strategies for MPC</title><author>LIE, Bernt ; DIEZ, Marta Duenas ; HAUGE, Tor Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-c3a1217f113c68b8762105b92bb22b44c7bab1aa5fda154f740d1db0eb29de393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><toplevel>online_resources</toplevel><creatorcontrib>LIE, Bernt</creatorcontrib><creatorcontrib>DIEZ, Marta Duenas</creatorcontrib><creatorcontrib>HAUGE, Tor Anders</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Modeling, identification and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIE, Bernt</au><au>DIEZ, Marta Duenas</au><au>HAUGE, Tor Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of implementation strategies for MPC</atitle><jtitle>Modeling, identification and control</jtitle><date>2005</date><risdate>2005</risdate><volume>26</volume><issue>1</issue><spage>39</spage><epage>50</epage><pages>39-50</pages><issn>0332-7353</issn><eissn>1890-1328</eissn><abstract>Four quadratic programming (QP) formulations of model predictive control (MPC) are compared with regards to ease of formulation, memory requirement, and numerical properties. The comparison is based on two example processes: a paper machine model, and a model of the Tennessee Eastman challenge process; the number of free variables range from 150-1400. Five commercial QP solvers are compared. Preliminary results indicate that dense solvers still are the most efficient, but sparse solvers hold great promise.</abstract><cop>Oslo</cop><pub>Research Council of Norway</pub><doi>10.4173/mic.2005.1.3</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0332-7353
ispartof Modeling, identification and control, 2005, Vol.26 (1), p.39-50
issn 0332-7353
1890-1328
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b97ce4657d27452a9ced888c978c3b2d
source Publicly Available Content Database
subjects Applied sciences
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
title A comparison of implementation strategies for MPC
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20implementation%20strategies%20for%20MPC&rft.jtitle=Modeling,%20identification%20and%20control&rft.au=LIE,%20Bernt&rft.date=2005&rft.volume=26&rft.issue=1&rft.spage=39&rft.epage=50&rft.pages=39-50&rft.issn=0332-7353&rft.eissn=1890-1328&rft_id=info:doi/10.4173/mic.2005.1.3&rft_dat=%3Cproquest_doaj_%3E2709773801%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-c3a1217f113c68b8762105b92bb22b44c7bab1aa5fda154f740d1db0eb29de393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1024832093&rft_id=info:pmid/&rfr_iscdi=true