Loading…

Estimates of gene ensemble noise highlight critical pathways and predict disease severity in H1N1, COVID-19 and mortality in sepsis patients

Finding novel biomarkers for human pathologies and predicting clinical outcomes for patients is challenging. This stems from the heterogeneous response of individuals to disease and is reflected in the inter-individual variability of gene expression responses that obscures differential gene expressi...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-05, Vol.11 (1), p.10793-10793, Article 10793
Main Authors: de Jong, Tristan V., Guryev, Victor, Moshkin, Yuri M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-968225999f047af2f864e00603c487dbbfaa8787dcbaf41fd1c7b2897920a0df3
cites cdi_FETCH-LOGICAL-c517t-968225999f047af2f864e00603c487dbbfaa8787dcbaf41fd1c7b2897920a0df3
container_end_page 10793
container_issue 1
container_start_page 10793
container_title Scientific reports
container_volume 11
creator de Jong, Tristan V.
Guryev, Victor
Moshkin, Yuri M.
description Finding novel biomarkers for human pathologies and predicting clinical outcomes for patients is challenging. This stems from the heterogeneous response of individuals to disease and is reflected in the inter-individual variability of gene expression responses that obscures differential gene expression analysis. Here, we developed an alternative approach that could be applied to dissect the disease-associated molecular changes. We define gene ensemble noise as a measure that represents a variance for a collection of genes encoding for either members of known biological pathways or subunits of annotated protein complexes and calculated within an individual. The gene ensemble noise allows for the holistic identification and interpretation of gene expression disbalance on the level of gene networks and systems. By comparing gene expression data from COVID-19, H1N1, and sepsis patients we identified common disturbances in a number of pathways and protein complexes relevant to the sepsis pathology. Among others, these include the mitochondrial respiratory chain complex I and peroxisomes. This suggests a Warburg effect and oxidative stress as common hallmarks of the immune host–pathogen response. Finally, we showed that gene ensemble noise could successfully be applied for the prediction of clinical outcome namely, the mortality of patients. Thus, we conclude that gene ensemble noise represents a promising approach for the investigation of molecular mechanisms of pathology through a prism of alterations in the coherent expression of gene circuits.
doi_str_mv 10.1038/s41598-021-90192-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b9aef1fb8b2c43d68c53a1e6fda14b93</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b9aef1fb8b2c43d68c53a1e6fda14b93</doaj_id><sourcerecordid>2531421116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-968225999f047af2f864e00603c487dbbfaa8787dcbaf41fd1c7b2897920a0df3</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEolXpC3CyxIUDoR7H-eMLEtoWulJFL8DVmjjjrFfZeLGzRfsOPDTezapQDliyPLJ_82lm_GXZa-DvgRfNVZRQqibnAnLFQYlcPcvOBZdlLgohnv8Vn2WXMa55WqVQEtTL7KyQvABZyfPs102c3AYnisxb1tNIjMZIm3YgNnoXia1cvxrSnpgJbnIGB7bFafUT95Hh2LFtoM6ZiXUJxsRHeqAE7pkb2S18gXdscf99eZ2DOuIbHyYcTu-RttHFg56jcYqvshcWh0iXp_Mi-_bp5uviNr-7_7xcfLzLTQn1lKuqEaJUSlkua7TCNpUkziteGNnUXdtaxKZOkWnRSrAdmLoVjaqV4Mg7W1xky1m387jW25AGEPbao9PHCx96jSG1OpBuFZIF2zatMLLoqsaUBQJVtkOQrSqS1odZa7trN9SZ1EfA4Yno05fRrXTvH3QDUqYmksDbk0DwP3YUJ71x0dAw4Eh-F7Uo0x_KklcioW_-Qdd-F8Y0qgMFUgBAlSgxUyb4GAPZx2KA64N39Owdnbyjj97RhyqKOSkmeOwp_JH-T9ZvZMTG6g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531421116</pqid></control><display><type>article</type><title>Estimates of gene ensemble noise highlight critical pathways and predict disease severity in H1N1, COVID-19 and mortality in sepsis patients</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>de Jong, Tristan V. ; Guryev, Victor ; Moshkin, Yuri M.</creator><creatorcontrib>de Jong, Tristan V. ; Guryev, Victor ; Moshkin, Yuri M.</creatorcontrib><description>Finding novel biomarkers for human pathologies and predicting clinical outcomes for patients is challenging. This stems from the heterogeneous response of individuals to disease and is reflected in the inter-individual variability of gene expression responses that obscures differential gene expression analysis. Here, we developed an alternative approach that could be applied to dissect the disease-associated molecular changes. We define gene ensemble noise as a measure that represents a variance for a collection of genes encoding for either members of known biological pathways or subunits of annotated protein complexes and calculated within an individual. The gene ensemble noise allows for the holistic identification and interpretation of gene expression disbalance on the level of gene networks and systems. By comparing gene expression data from COVID-19, H1N1, and sepsis patients we identified common disturbances in a number of pathways and protein complexes relevant to the sepsis pathology. Among others, these include the mitochondrial respiratory chain complex I and peroxisomes. This suggests a Warburg effect and oxidative stress as common hallmarks of the immune host–pathogen response. Finally, we showed that gene ensemble noise could successfully be applied for the prediction of clinical outcome namely, the mortality of patients. Thus, we conclude that gene ensemble noise represents a promising approach for the investigation of molecular mechanisms of pathology through a prism of alterations in the coherent expression of gene circuits.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-90192-9</identifier><identifier>PMID: 34031464</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2017 ; 631/1647/48 ; 631/1647/767/2201 ; 692/53/2422 ; 692/53/2423 ; Coronaviruses ; COVID-19 ; Electron transport chain ; Gene expression ; Humanities and Social Sciences ; Mitochondria ; Molecular modelling ; Mortality ; multidisciplinary ; Oxidative stress ; Pathology ; Peroxisomes ; Science ; Science (multidisciplinary) ; Sepsis</subject><ispartof>Scientific reports, 2021-05, Vol.11 (1), p.10793-10793, Article 10793</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-968225999f047af2f864e00603c487dbbfaa8787dcbaf41fd1c7b2897920a0df3</citedby><cites>FETCH-LOGICAL-c517t-968225999f047af2f864e00603c487dbbfaa8787dcbaf41fd1c7b2897920a0df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2531421116/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2531421116?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids></links><search><creatorcontrib>de Jong, Tristan V.</creatorcontrib><creatorcontrib>Guryev, Victor</creatorcontrib><creatorcontrib>Moshkin, Yuri M.</creatorcontrib><title>Estimates of gene ensemble noise highlight critical pathways and predict disease severity in H1N1, COVID-19 and mortality in sepsis patients</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Finding novel biomarkers for human pathologies and predicting clinical outcomes for patients is challenging. This stems from the heterogeneous response of individuals to disease and is reflected in the inter-individual variability of gene expression responses that obscures differential gene expression analysis. Here, we developed an alternative approach that could be applied to dissect the disease-associated molecular changes. We define gene ensemble noise as a measure that represents a variance for a collection of genes encoding for either members of known biological pathways or subunits of annotated protein complexes and calculated within an individual. The gene ensemble noise allows for the holistic identification and interpretation of gene expression disbalance on the level of gene networks and systems. By comparing gene expression data from COVID-19, H1N1, and sepsis patients we identified common disturbances in a number of pathways and protein complexes relevant to the sepsis pathology. Among others, these include the mitochondrial respiratory chain complex I and peroxisomes. This suggests a Warburg effect and oxidative stress as common hallmarks of the immune host–pathogen response. Finally, we showed that gene ensemble noise could successfully be applied for the prediction of clinical outcome namely, the mortality of patients. Thus, we conclude that gene ensemble noise represents a promising approach for the investigation of molecular mechanisms of pathology through a prism of alterations in the coherent expression of gene circuits.</description><subject>631/1647/2017</subject><subject>631/1647/48</subject><subject>631/1647/767/2201</subject><subject>692/53/2422</subject><subject>692/53/2423</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Electron transport chain</subject><subject>Gene expression</subject><subject>Humanities and Social Sciences</subject><subject>Mitochondria</subject><subject>Molecular modelling</subject><subject>Mortality</subject><subject>multidisciplinary</subject><subject>Oxidative stress</subject><subject>Pathology</subject><subject>Peroxisomes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sepsis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQxiMEolXpC3CyxIUDoR7H-eMLEtoWulJFL8DVmjjjrFfZeLGzRfsOPDTezapQDliyPLJ_82lm_GXZa-DvgRfNVZRQqibnAnLFQYlcPcvOBZdlLgohnv8Vn2WXMa55WqVQEtTL7KyQvABZyfPs102c3AYnisxb1tNIjMZIm3YgNnoXia1cvxrSnpgJbnIGB7bFafUT95Hh2LFtoM6ZiXUJxsRHeqAE7pkb2S18gXdscf99eZ2DOuIbHyYcTu-RttHFg56jcYqvshcWh0iXp_Mi-_bp5uviNr-7_7xcfLzLTQn1lKuqEaJUSlkua7TCNpUkziteGNnUXdtaxKZOkWnRSrAdmLoVjaqV4Mg7W1xky1m387jW25AGEPbao9PHCx96jSG1OpBuFZIF2zatMLLoqsaUBQJVtkOQrSqS1odZa7trN9SZ1EfA4Yno05fRrXTvH3QDUqYmksDbk0DwP3YUJ71x0dAw4Eh-F7Uo0x_KklcioW_-Qdd-F8Y0qgMFUgBAlSgxUyb4GAPZx2KA64N39Owdnbyjj97RhyqKOSkmeOwp_JH-T9ZvZMTG6g</recordid><startdate>20210524</startdate><enddate>20210524</enddate><creator>de Jong, Tristan V.</creator><creator>Guryev, Victor</creator><creator>Moshkin, Yuri M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210524</creationdate><title>Estimates of gene ensemble noise highlight critical pathways and predict disease severity in H1N1, COVID-19 and mortality in sepsis patients</title><author>de Jong, Tristan V. ; Guryev, Victor ; Moshkin, Yuri M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-968225999f047af2f864e00603c487dbbfaa8787dcbaf41fd1c7b2897920a0df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/2017</topic><topic>631/1647/48</topic><topic>631/1647/767/2201</topic><topic>692/53/2422</topic><topic>692/53/2423</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Electron transport chain</topic><topic>Gene expression</topic><topic>Humanities and Social Sciences</topic><topic>Mitochondria</topic><topic>Molecular modelling</topic><topic>Mortality</topic><topic>multidisciplinary</topic><topic>Oxidative stress</topic><topic>Pathology</topic><topic>Peroxisomes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sepsis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Jong, Tristan V.</creatorcontrib><creatorcontrib>Guryev, Victor</creatorcontrib><creatorcontrib>Moshkin, Yuri M.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Jong, Tristan V.</au><au>Guryev, Victor</au><au>Moshkin, Yuri M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates of gene ensemble noise highlight critical pathways and predict disease severity in H1N1, COVID-19 and mortality in sepsis patients</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2021-05-24</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>10793</spage><epage>10793</epage><pages>10793-10793</pages><artnum>10793</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Finding novel biomarkers for human pathologies and predicting clinical outcomes for patients is challenging. This stems from the heterogeneous response of individuals to disease and is reflected in the inter-individual variability of gene expression responses that obscures differential gene expression analysis. Here, we developed an alternative approach that could be applied to dissect the disease-associated molecular changes. We define gene ensemble noise as a measure that represents a variance for a collection of genes encoding for either members of known biological pathways or subunits of annotated protein complexes and calculated within an individual. The gene ensemble noise allows for the holistic identification and interpretation of gene expression disbalance on the level of gene networks and systems. By comparing gene expression data from COVID-19, H1N1, and sepsis patients we identified common disturbances in a number of pathways and protein complexes relevant to the sepsis pathology. Among others, these include the mitochondrial respiratory chain complex I and peroxisomes. This suggests a Warburg effect and oxidative stress as common hallmarks of the immune host–pathogen response. Finally, we showed that gene ensemble noise could successfully be applied for the prediction of clinical outcome namely, the mortality of patients. Thus, we conclude that gene ensemble noise represents a promising approach for the investigation of molecular mechanisms of pathology through a prism of alterations in the coherent expression of gene circuits.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34031464</pmid><doi>10.1038/s41598-021-90192-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-05, Vol.11 (1), p.10793-10793, Article 10793
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b9aef1fb8b2c43d68c53a1e6fda14b93
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access
subjects 631/1647/2017
631/1647/48
631/1647/767/2201
692/53/2422
692/53/2423
Coronaviruses
COVID-19
Electron transport chain
Gene expression
Humanities and Social Sciences
Mitochondria
Molecular modelling
Mortality
multidisciplinary
Oxidative stress
Pathology
Peroxisomes
Science
Science (multidisciplinary)
Sepsis
title Estimates of gene ensemble noise highlight critical pathways and predict disease severity in H1N1, COVID-19 and mortality in sepsis patients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20of%20gene%20ensemble%20noise%20highlight%20critical%20pathways%20and%20predict%20disease%20severity%20in%20H1N1,%20COVID-19%20and%20mortality%20in%20sepsis%20patients&rft.jtitle=Scientific%20reports&rft.au=de%20Jong,%20Tristan%20V.&rft.date=2021-05-24&rft.volume=11&rft.issue=1&rft.spage=10793&rft.epage=10793&rft.pages=10793-10793&rft.artnum=10793&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-90192-9&rft_dat=%3Cproquest_doaj_%3E2531421116%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-968225999f047af2f864e00603c487dbbfaa8787dcbaf41fd1c7b2897920a0df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2531421116&rft_id=info:pmid/34031464&rfr_iscdi=true