Loading…

Structural Gaussian priors for Bayesian CT reconstruction of subsea pipes

A non-destructive testing (NDT) application of X-ray computed tomography (CT) is inspection of subsea pipes in operation via 2D cross-sectional scans. Data acquisition is time-consuming and costly due to the challenging subsea environment. While reducing the number of projections in a CT scan yields...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics in science and engineering 2023-12, Vol.31 (1)
Main Authors: Christensen, Silja L., Riis, Nicolai A. B., Uribe, Felipe, Jørgensen, Jakob S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3
cites cdi_FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3
container_end_page
container_issue 1
container_start_page
container_title Applied mathematics in science and engineering
container_volume 31
creator Christensen, Silja L.
Riis, Nicolai A. B.
Uribe, Felipe
Jørgensen, Jakob S.
description A non-destructive testing (NDT) application of X-ray computed tomography (CT) is inspection of subsea pipes in operation via 2D cross-sectional scans. Data acquisition is time-consuming and costly due to the challenging subsea environment. While reducing the number of projections in a CT scan yields time and cost savings, this compromises the reconstruction quality when conventional reconstruction methods are used. To address this issue we take a Bayesian approach to CT reconstruction and focus on designing an effective prior that introduces additional information to the problem. We propose a new class of structural Gaussian priors to enforce expected material properties in different regions of the reconstructed image based on available a-priori information about the pipe's layered structure. The prior is composed from Gaussian distributions, and we utilize this to propose an efficient computational strategy to sample the resulting posterior distribution. This is essential in practical NDT applications for fast processing of the large-scale data we see in CT. Numerical experiments with synthetic and real data show that the proposed structural Gaussian prior reduces artifacts and enhances contrast in the reconstruction, compared to using only a conventional Gaussian Markov random field prior or no prior information at all. Furthermore, we obtain uncertainty estimates that indicate the certainty of the reconstructions increase when more prior information is added.
doi_str_mv 10.1080/27690911.2023.2224918
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b9b3808b610f425597f2e74efb28bc1f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b9b3808b610f425597f2e74efb28bc1f</doaj_id><sourcerecordid>2898169886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxYMoWGo_grDguXXyZzfJUYvWguDBeg5JdiJb6mZNdg_99nbbKp5mePN48-BHyC2FBQUF90xWGjSlCwaMLxhjQlN1QSajPh8Pl__2azLLeQsATGoBWk7I-r1Pg--HZHfFyg45N7YtutTElIsQU_Fo93jUlpsioY9tPvqb2BYxFHlwGW3RNR3mG3IV7C7j7Dyn5OP5abN8mb--rdbLh9e551r0cy24hhq8Rc19JbF2QiHVqvKCMaCUeuZKUXOqAFFwiRRqXQtuJUeqVOBTsj7l1tFuzaHql017E21jjkJMn8amvvE7NE47rkC5ikIQrCy1DAylwOCYcp6OWXenrC7F7wFzb7ZxSO2hvmFKK1pppaqDqzy5fIo5Jwx_XymYEYL5hWBGCOYMgf8AeKV4Yg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898169886</pqid></control><display><type>article</type><title>Structural Gaussian priors for Bayesian CT reconstruction of subsea pipes</title><source>Taylor &amp; Francis (Open access)</source><creator>Christensen, Silja L. ; Riis, Nicolai A. B. ; Uribe, Felipe ; Jørgensen, Jakob S.</creator><creatorcontrib>Christensen, Silja L. ; Riis, Nicolai A. B. ; Uribe, Felipe ; Jørgensen, Jakob S.</creatorcontrib><description>A non-destructive testing (NDT) application of X-ray computed tomography (CT) is inspection of subsea pipes in operation via 2D cross-sectional scans. Data acquisition is time-consuming and costly due to the challenging subsea environment. While reducing the number of projections in a CT scan yields time and cost savings, this compromises the reconstruction quality when conventional reconstruction methods are used. To address this issue we take a Bayesian approach to CT reconstruction and focus on designing an effective prior that introduces additional information to the problem. We propose a new class of structural Gaussian priors to enforce expected material properties in different regions of the reconstructed image based on available a-priori information about the pipe's layered structure. The prior is composed from Gaussian distributions, and we utilize this to propose an efficient computational strategy to sample the resulting posterior distribution. This is essential in practical NDT applications for fast processing of the large-scale data we see in CT. Numerical experiments with synthetic and real data show that the proposed structural Gaussian prior reduces artifacts and enhances contrast in the reconstruction, compared to using only a conventional Gaussian Markov random field prior or no prior information at all. Furthermore, we obtain uncertainty estimates that indicate the certainty of the reconstructions increase when more prior information is added.</description><identifier>ISSN: 2769-0911</identifier><identifier>EISSN: 2769-0911</identifier><identifier>DOI: 10.1080/27690911.2023.2224918</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Ltd</publisher><subject>Bayesian analysis ; bayesian inversion ; Computed tomography ; Data acquisition ; Fields (mathematics) ; Image reconstruction ; Material properties ; non-destructive testing ; Nondestructive testing ; pipeline inspection ; Pipes ; uncertainty quantification ; x-ray computed tomography</subject><ispartof>Applied mathematics in science and engineering, 2023-12, Vol.31 (1)</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3</citedby><cites>FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3</cites><orcidid>0000-0002-6883-9078 ; 0000-0003-3995-3055 ; 0000-0001-9114-754X ; 0000-0002-1010-8184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Christensen, Silja L.</creatorcontrib><creatorcontrib>Riis, Nicolai A. B.</creatorcontrib><creatorcontrib>Uribe, Felipe</creatorcontrib><creatorcontrib>Jørgensen, Jakob S.</creatorcontrib><title>Structural Gaussian priors for Bayesian CT reconstruction of subsea pipes</title><title>Applied mathematics in science and engineering</title><description>A non-destructive testing (NDT) application of X-ray computed tomography (CT) is inspection of subsea pipes in operation via 2D cross-sectional scans. Data acquisition is time-consuming and costly due to the challenging subsea environment. While reducing the number of projections in a CT scan yields time and cost savings, this compromises the reconstruction quality when conventional reconstruction methods are used. To address this issue we take a Bayesian approach to CT reconstruction and focus on designing an effective prior that introduces additional information to the problem. We propose a new class of structural Gaussian priors to enforce expected material properties in different regions of the reconstructed image based on available a-priori information about the pipe's layered structure. The prior is composed from Gaussian distributions, and we utilize this to propose an efficient computational strategy to sample the resulting posterior distribution. This is essential in practical NDT applications for fast processing of the large-scale data we see in CT. Numerical experiments with synthetic and real data show that the proposed structural Gaussian prior reduces artifacts and enhances contrast in the reconstruction, compared to using only a conventional Gaussian Markov random field prior or no prior information at all. Furthermore, we obtain uncertainty estimates that indicate the certainty of the reconstructions increase when more prior information is added.</description><subject>Bayesian analysis</subject><subject>bayesian inversion</subject><subject>Computed tomography</subject><subject>Data acquisition</subject><subject>Fields (mathematics)</subject><subject>Image reconstruction</subject><subject>Material properties</subject><subject>non-destructive testing</subject><subject>Nondestructive testing</subject><subject>pipeline inspection</subject><subject>Pipes</subject><subject>uncertainty quantification</subject><subject>x-ray computed tomography</subject><issn>2769-0911</issn><issn>2769-0911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxYMoWGo_grDguXXyZzfJUYvWguDBeg5JdiJb6mZNdg_99nbbKp5mePN48-BHyC2FBQUF90xWGjSlCwaMLxhjQlN1QSajPh8Pl__2azLLeQsATGoBWk7I-r1Pg--HZHfFyg45N7YtutTElIsQU_Fo93jUlpsioY9tPvqb2BYxFHlwGW3RNR3mG3IV7C7j7Dyn5OP5abN8mb--rdbLh9e551r0cy24hhq8Rc19JbF2QiHVqvKCMaCUeuZKUXOqAFFwiRRqXQtuJUeqVOBTsj7l1tFuzaHql017E21jjkJMn8amvvE7NE47rkC5ikIQrCy1DAylwOCYcp6OWXenrC7F7wFzb7ZxSO2hvmFKK1pppaqDqzy5fIo5Jwx_XymYEYL5hWBGCOYMgf8AeKV4Yg</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Christensen, Silja L.</creator><creator>Riis, Nicolai A. B.</creator><creator>Uribe, Felipe</creator><creator>Jørgensen, Jakob S.</creator><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6883-9078</orcidid><orcidid>https://orcid.org/0000-0003-3995-3055</orcidid><orcidid>https://orcid.org/0000-0001-9114-754X</orcidid><orcidid>https://orcid.org/0000-0002-1010-8184</orcidid></search><sort><creationdate>20231231</creationdate><title>Structural Gaussian priors for Bayesian CT reconstruction of subsea pipes</title><author>Christensen, Silja L. ; Riis, Nicolai A. B. ; Uribe, Felipe ; Jørgensen, Jakob S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>bayesian inversion</topic><topic>Computed tomography</topic><topic>Data acquisition</topic><topic>Fields (mathematics)</topic><topic>Image reconstruction</topic><topic>Material properties</topic><topic>non-destructive testing</topic><topic>Nondestructive testing</topic><topic>pipeline inspection</topic><topic>Pipes</topic><topic>uncertainty quantification</topic><topic>x-ray computed tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christensen, Silja L.</creatorcontrib><creatorcontrib>Riis, Nicolai A. B.</creatorcontrib><creatorcontrib>Uribe, Felipe</creatorcontrib><creatorcontrib>Jørgensen, Jakob S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied mathematics in science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christensen, Silja L.</au><au>Riis, Nicolai A. B.</au><au>Uribe, Felipe</au><au>Jørgensen, Jakob S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Gaussian priors for Bayesian CT reconstruction of subsea pipes</atitle><jtitle>Applied mathematics in science and engineering</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>31</volume><issue>1</issue><issn>2769-0911</issn><eissn>2769-0911</eissn><abstract>A non-destructive testing (NDT) application of X-ray computed tomography (CT) is inspection of subsea pipes in operation via 2D cross-sectional scans. Data acquisition is time-consuming and costly due to the challenging subsea environment. While reducing the number of projections in a CT scan yields time and cost savings, this compromises the reconstruction quality when conventional reconstruction methods are used. To address this issue we take a Bayesian approach to CT reconstruction and focus on designing an effective prior that introduces additional information to the problem. We propose a new class of structural Gaussian priors to enforce expected material properties in different regions of the reconstructed image based on available a-priori information about the pipe's layered structure. The prior is composed from Gaussian distributions, and we utilize this to propose an efficient computational strategy to sample the resulting posterior distribution. This is essential in practical NDT applications for fast processing of the large-scale data we see in CT. Numerical experiments with synthetic and real data show that the proposed structural Gaussian prior reduces artifacts and enhances contrast in the reconstruction, compared to using only a conventional Gaussian Markov random field prior or no prior information at all. Furthermore, we obtain uncertainty estimates that indicate the certainty of the reconstructions increase when more prior information is added.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.1080/27690911.2023.2224918</doi><orcidid>https://orcid.org/0000-0002-6883-9078</orcidid><orcidid>https://orcid.org/0000-0003-3995-3055</orcidid><orcidid>https://orcid.org/0000-0001-9114-754X</orcidid><orcidid>https://orcid.org/0000-0002-1010-8184</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2769-0911
ispartof Applied mathematics in science and engineering, 2023-12, Vol.31 (1)
issn 2769-0911
2769-0911
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b9b3808b610f425597f2e74efb28bc1f
source Taylor & Francis (Open access)
subjects Bayesian analysis
bayesian inversion
Computed tomography
Data acquisition
Fields (mathematics)
Image reconstruction
Material properties
non-destructive testing
Nondestructive testing
pipeline inspection
Pipes
uncertainty quantification
x-ray computed tomography
title Structural Gaussian priors for Bayesian CT reconstruction of subsea pipes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Gaussian%20priors%20for%20Bayesian%20CT%20reconstruction%20of%20subsea%20pipes&rft.jtitle=Applied%20mathematics%20in%20science%20and%20engineering&rft.au=Christensen,%20Silja%20L.&rft.date=2023-12-31&rft.volume=31&rft.issue=1&rft.issn=2769-0911&rft.eissn=2769-0911&rft_id=info:doi/10.1080/27690911.2023.2224918&rft_dat=%3Cproquest_doaj_%3E2898169886%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2898169886&rft_id=info:pmid/&rfr_iscdi=true