Loading…
Structural Gaussian priors for Bayesian CT reconstruction of subsea pipes
A non-destructive testing (NDT) application of X-ray computed tomography (CT) is inspection of subsea pipes in operation via 2D cross-sectional scans. Data acquisition is time-consuming and costly due to the challenging subsea environment. While reducing the number of projections in a CT scan yields...
Saved in:
Published in: | Applied mathematics in science and engineering 2023-12, Vol.31 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Applied mathematics in science and engineering |
container_volume | 31 |
creator | Christensen, Silja L. Riis, Nicolai A. B. Uribe, Felipe Jørgensen, Jakob S. |
description | A non-destructive testing (NDT) application of X-ray computed tomography (CT) is inspection of subsea pipes in operation via 2D cross-sectional scans. Data acquisition is time-consuming and costly due to the challenging subsea environment. While reducing the number of projections in a CT scan yields time and cost savings, this compromises the reconstruction quality when conventional reconstruction methods are used. To address this issue we take a Bayesian approach to CT reconstruction and focus on designing an effective prior that introduces additional information to the problem. We propose a new class of structural Gaussian priors to enforce expected material properties in different regions of the reconstructed image based on available a-priori information about the pipe's layered structure. The prior is composed from Gaussian distributions, and we utilize this to propose an efficient computational strategy to sample the resulting posterior distribution. This is essential in practical NDT applications for fast processing of the large-scale data we see in CT. Numerical experiments with synthetic and real data show that the proposed structural Gaussian prior reduces artifacts and enhances contrast in the reconstruction, compared to using only a conventional Gaussian Markov random field prior or no prior information at all. Furthermore, we obtain uncertainty estimates that indicate the certainty of the reconstructions increase when more prior information is added. |
doi_str_mv | 10.1080/27690911.2023.2224918 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b9b3808b610f425597f2e74efb28bc1f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b9b3808b610f425597f2e74efb28bc1f</doaj_id><sourcerecordid>2898169886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxYMoWGo_grDguXXyZzfJUYvWguDBeg5JdiJb6mZNdg_99nbbKp5mePN48-BHyC2FBQUF90xWGjSlCwaMLxhjQlN1QSajPh8Pl__2azLLeQsATGoBWk7I-r1Pg--HZHfFyg45N7YtutTElIsQU_Fo93jUlpsioY9tPvqb2BYxFHlwGW3RNR3mG3IV7C7j7Dyn5OP5abN8mb--rdbLh9e551r0cy24hhq8Rc19JbF2QiHVqvKCMaCUeuZKUXOqAFFwiRRqXQtuJUeqVOBTsj7l1tFuzaHql017E21jjkJMn8amvvE7NE47rkC5ikIQrCy1DAylwOCYcp6OWXenrC7F7wFzb7ZxSO2hvmFKK1pppaqDqzy5fIo5Jwx_XymYEYL5hWBGCOYMgf8AeKV4Yg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898169886</pqid></control><display><type>article</type><title>Structural Gaussian priors for Bayesian CT reconstruction of subsea pipes</title><source>Taylor & Francis (Open access)</source><creator>Christensen, Silja L. ; Riis, Nicolai A. B. ; Uribe, Felipe ; Jørgensen, Jakob S.</creator><creatorcontrib>Christensen, Silja L. ; Riis, Nicolai A. B. ; Uribe, Felipe ; Jørgensen, Jakob S.</creatorcontrib><description>A non-destructive testing (NDT) application of X-ray computed tomography (CT) is inspection of subsea pipes in operation via 2D cross-sectional scans. Data acquisition is time-consuming and costly due to the challenging subsea environment. While reducing the number of projections in a CT scan yields time and cost savings, this compromises the reconstruction quality when conventional reconstruction methods are used. To address this issue we take a Bayesian approach to CT reconstruction and focus on designing an effective prior that introduces additional information to the problem. We propose a new class of structural Gaussian priors to enforce expected material properties in different regions of the reconstructed image based on available a-priori information about the pipe's layered structure. The prior is composed from Gaussian distributions, and we utilize this to propose an efficient computational strategy to sample the resulting posterior distribution. This is essential in practical NDT applications for fast processing of the large-scale data we see in CT. Numerical experiments with synthetic and real data show that the proposed structural Gaussian prior reduces artifacts and enhances contrast in the reconstruction, compared to using only a conventional Gaussian Markov random field prior or no prior information at all. Furthermore, we obtain uncertainty estimates that indicate the certainty of the reconstructions increase when more prior information is added.</description><identifier>ISSN: 2769-0911</identifier><identifier>EISSN: 2769-0911</identifier><identifier>DOI: 10.1080/27690911.2023.2224918</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis Ltd</publisher><subject>Bayesian analysis ; bayesian inversion ; Computed tomography ; Data acquisition ; Fields (mathematics) ; Image reconstruction ; Material properties ; non-destructive testing ; Nondestructive testing ; pipeline inspection ; Pipes ; uncertainty quantification ; x-ray computed tomography</subject><ispartof>Applied mathematics in science and engineering, 2023-12, Vol.31 (1)</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3</citedby><cites>FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3</cites><orcidid>0000-0002-6883-9078 ; 0000-0003-3995-3055 ; 0000-0001-9114-754X ; 0000-0002-1010-8184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Christensen, Silja L.</creatorcontrib><creatorcontrib>Riis, Nicolai A. B.</creatorcontrib><creatorcontrib>Uribe, Felipe</creatorcontrib><creatorcontrib>Jørgensen, Jakob S.</creatorcontrib><title>Structural Gaussian priors for Bayesian CT reconstruction of subsea pipes</title><title>Applied mathematics in science and engineering</title><description>A non-destructive testing (NDT) application of X-ray computed tomography (CT) is inspection of subsea pipes in operation via 2D cross-sectional scans. Data acquisition is time-consuming and costly due to the challenging subsea environment. While reducing the number of projections in a CT scan yields time and cost savings, this compromises the reconstruction quality when conventional reconstruction methods are used. To address this issue we take a Bayesian approach to CT reconstruction and focus on designing an effective prior that introduces additional information to the problem. We propose a new class of structural Gaussian priors to enforce expected material properties in different regions of the reconstructed image based on available a-priori information about the pipe's layered structure. The prior is composed from Gaussian distributions, and we utilize this to propose an efficient computational strategy to sample the resulting posterior distribution. This is essential in practical NDT applications for fast processing of the large-scale data we see in CT. Numerical experiments with synthetic and real data show that the proposed structural Gaussian prior reduces artifacts and enhances contrast in the reconstruction, compared to using only a conventional Gaussian Markov random field prior or no prior information at all. Furthermore, we obtain uncertainty estimates that indicate the certainty of the reconstructions increase when more prior information is added.</description><subject>Bayesian analysis</subject><subject>bayesian inversion</subject><subject>Computed tomography</subject><subject>Data acquisition</subject><subject>Fields (mathematics)</subject><subject>Image reconstruction</subject><subject>Material properties</subject><subject>non-destructive testing</subject><subject>Nondestructive testing</subject><subject>pipeline inspection</subject><subject>Pipes</subject><subject>uncertainty quantification</subject><subject>x-ray computed tomography</subject><issn>2769-0911</issn><issn>2769-0911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxYMoWGo_grDguXXyZzfJUYvWguDBeg5JdiJb6mZNdg_99nbbKp5mePN48-BHyC2FBQUF90xWGjSlCwaMLxhjQlN1QSajPh8Pl__2azLLeQsATGoBWk7I-r1Pg--HZHfFyg45N7YtutTElIsQU_Fo93jUlpsioY9tPvqb2BYxFHlwGW3RNR3mG3IV7C7j7Dyn5OP5abN8mb--rdbLh9e551r0cy24hhq8Rc19JbF2QiHVqvKCMaCUeuZKUXOqAFFwiRRqXQtuJUeqVOBTsj7l1tFuzaHql017E21jjkJMn8amvvE7NE47rkC5ikIQrCy1DAylwOCYcp6OWXenrC7F7wFzb7ZxSO2hvmFKK1pppaqDqzy5fIo5Jwx_XymYEYL5hWBGCOYMgf8AeKV4Yg</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Christensen, Silja L.</creator><creator>Riis, Nicolai A. B.</creator><creator>Uribe, Felipe</creator><creator>Jørgensen, Jakob S.</creator><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6883-9078</orcidid><orcidid>https://orcid.org/0000-0003-3995-3055</orcidid><orcidid>https://orcid.org/0000-0001-9114-754X</orcidid><orcidid>https://orcid.org/0000-0002-1010-8184</orcidid></search><sort><creationdate>20231231</creationdate><title>Structural Gaussian priors for Bayesian CT reconstruction of subsea pipes</title><author>Christensen, Silja L. ; Riis, Nicolai A. B. ; Uribe, Felipe ; Jørgensen, Jakob S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>bayesian inversion</topic><topic>Computed tomography</topic><topic>Data acquisition</topic><topic>Fields (mathematics)</topic><topic>Image reconstruction</topic><topic>Material properties</topic><topic>non-destructive testing</topic><topic>Nondestructive testing</topic><topic>pipeline inspection</topic><topic>Pipes</topic><topic>uncertainty quantification</topic><topic>x-ray computed tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christensen, Silja L.</creatorcontrib><creatorcontrib>Riis, Nicolai A. B.</creatorcontrib><creatorcontrib>Uribe, Felipe</creatorcontrib><creatorcontrib>Jørgensen, Jakob S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied mathematics in science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christensen, Silja L.</au><au>Riis, Nicolai A. B.</au><au>Uribe, Felipe</au><au>Jørgensen, Jakob S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Gaussian priors for Bayesian CT reconstruction of subsea pipes</atitle><jtitle>Applied mathematics in science and engineering</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>31</volume><issue>1</issue><issn>2769-0911</issn><eissn>2769-0911</eissn><abstract>A non-destructive testing (NDT) application of X-ray computed tomography (CT) is inspection of subsea pipes in operation via 2D cross-sectional scans. Data acquisition is time-consuming and costly due to the challenging subsea environment. While reducing the number of projections in a CT scan yields time and cost savings, this compromises the reconstruction quality when conventional reconstruction methods are used. To address this issue we take a Bayesian approach to CT reconstruction and focus on designing an effective prior that introduces additional information to the problem. We propose a new class of structural Gaussian priors to enforce expected material properties in different regions of the reconstructed image based on available a-priori information about the pipe's layered structure. The prior is composed from Gaussian distributions, and we utilize this to propose an efficient computational strategy to sample the resulting posterior distribution. This is essential in practical NDT applications for fast processing of the large-scale data we see in CT. Numerical experiments with synthetic and real data show that the proposed structural Gaussian prior reduces artifacts and enhances contrast in the reconstruction, compared to using only a conventional Gaussian Markov random field prior or no prior information at all. Furthermore, we obtain uncertainty estimates that indicate the certainty of the reconstructions increase when more prior information is added.</abstract><cop>Abingdon</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/27690911.2023.2224918</doi><orcidid>https://orcid.org/0000-0002-6883-9078</orcidid><orcidid>https://orcid.org/0000-0003-3995-3055</orcidid><orcidid>https://orcid.org/0000-0001-9114-754X</orcidid><orcidid>https://orcid.org/0000-0002-1010-8184</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2769-0911 |
ispartof | Applied mathematics in science and engineering, 2023-12, Vol.31 (1) |
issn | 2769-0911 2769-0911 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b9b3808b610f425597f2e74efb28bc1f |
source | Taylor & Francis (Open access) |
subjects | Bayesian analysis bayesian inversion Computed tomography Data acquisition Fields (mathematics) Image reconstruction Material properties non-destructive testing Nondestructive testing pipeline inspection Pipes uncertainty quantification x-ray computed tomography |
title | Structural Gaussian priors for Bayesian CT reconstruction of subsea pipes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Gaussian%20priors%20for%20Bayesian%20CT%20reconstruction%20of%20subsea%20pipes&rft.jtitle=Applied%20mathematics%20in%20science%20and%20engineering&rft.au=Christensen,%20Silja%20L.&rft.date=2023-12-31&rft.volume=31&rft.issue=1&rft.issn=2769-0911&rft.eissn=2769-0911&rft_id=info:doi/10.1080/27690911.2023.2224918&rft_dat=%3Cproquest_doaj_%3E2898169886%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-94390d0cae93c67edb48e1986c4220111c2b54d3180ee437e10d9d43a73e188f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2898169886&rft_id=info:pmid/&rfr_iscdi=true |