Loading…

Kinetics and Thermodynamics of the Phase Transformation in the Nanocrystalline Substance—Gas Phase System

This study presents a model of the reaction of a nanocrystalline substance within the gas phase, where diffusion of gas reactants in the volume of the nanocrystallites is a rate-limiting step. According to the model calculations carried out, the rate of diffusion across the phase boundary located on...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2024-01, Vol.14 (2), p.129
Main Authors: Arabczyk, Walerian, Pelka, Rafał, Wilk, Bartłomiej, Lendzion-Bieluń, Zofia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c365t-4486f97e1e6a34ef5fd1d5650326acbe34db61cc1745db4326833e8c3e6a80163
container_end_page
container_issue 2
container_start_page 129
container_title Crystals (Basel)
container_volume 14
creator Arabczyk, Walerian
Pelka, Rafał
Wilk, Bartłomiej
Lendzion-Bieluń, Zofia
description This study presents a model of the reaction of a nanocrystalline substance within the gas phase, where diffusion of gas reactants in the volume of the nanocrystallites is a rate-limiting step. According to the model calculations carried out, the rate of diffusion across the phase boundary located on the nanocrystallite surface limits the rate of the process. It was stated that in chemical processes with a phase transformation, the critical concentration of absorbate depends on two factors: the specific active surface area of the adsorbent and the difference in chemical potentials between the gas phase and the equilibrium potential at which the phase transformation occurs. When the actual adsorbate potential in the gas phase is much greater than the equilibrium potential of the nanocrystallite with the largest specific active surface, nanocrystallites undergo phase changes in the order according to their specific active surfaces from the largest to the smallest. In a process where the actual adsorbate potential is close to an equilibrium one, nanocrystallites undergo phase transformation in the order of their specific active surface from the smallest to the largest.
doi_str_mv 10.3390/cryst14020129
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b9b6ca4f0f42467097fef398a3963c53</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784038148</galeid><doaj_id>oai_doaj_org_article_b9b6ca4f0f42467097fef398a3963c53</doaj_id><sourcerecordid>A784038148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-4486f97e1e6a34ef5fd1d5650326acbe34db61cc1745db4326833e8c3e6a80163</originalsourceid><addsrcrecordid>eNpVUcFu2zAMNYoVaNHl2LuBnt1JpizJxyDYsqLFNqDpWaBlqnEWS53kHHLrR-wL9yVVkmLYxIOIp_ceSbEorjm7BWjZJxv3aeKC1YzX7VlxWTMFlYCm_vBPflHMUtqwfJRkSvHL4uf94GkabCrR9-VqTXEM_d7jeICCK6c1lT_WmKhcRfTJhTjiNARfDv749g19OJbG7TY7lY-7Lufe0p_X30tM79rHTKDxY3HucJto9n5fFU9fPq8WX6uH78u7xfyhsiCbqRJCS9cq4iQRBLnG9bxvZMOglmg7AtF3klvLlWj6TmRUA5C2kPmacQlXxd3Jtw-4MS9xGDHuTcDBHIEQnw3GPPOWTNd20qJwzIlaSMVa5chBqxFaCbaB7HVz8nqJ4deO0mQ2YRd9bt_ULbBGMykOrNsT6xmz6eBdmCLaHD3ljwye3JDxudKCgeZCZ0F1EtgYUork_rbJmTns0_y3T3gDfemUfg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930580643</pqid></control><display><type>article</type><title>Kinetics and Thermodynamics of the Phase Transformation in the Nanocrystalline Substance—Gas Phase System</title><source>ProQuest - Publicly Available Content Database</source><creator>Arabczyk, Walerian ; Pelka, Rafał ; Wilk, Bartłomiej ; Lendzion-Bieluń, Zofia</creator><creatorcontrib>Arabczyk, Walerian ; Pelka, Rafał ; Wilk, Bartłomiej ; Lendzion-Bieluń, Zofia</creatorcontrib><description>This study presents a model of the reaction of a nanocrystalline substance within the gas phase, where diffusion of gas reactants in the volume of the nanocrystallites is a rate-limiting step. According to the model calculations carried out, the rate of diffusion across the phase boundary located on the nanocrystallite surface limits the rate of the process. It was stated that in chemical processes with a phase transformation, the critical concentration of absorbate depends on two factors: the specific active surface area of the adsorbent and the difference in chemical potentials between the gas phase and the equilibrium potential at which the phase transformation occurs. When the actual adsorbate potential in the gas phase is much greater than the equilibrium potential of the nanocrystallite with the largest specific active surface, nanocrystallites undergo phase changes in the order according to their specific active surfaces from the largest to the smallest. In a process where the actual adsorbate potential is close to an equilibrium one, nanocrystallites undergo phase transformation in the order of their specific active surface from the smallest to the largest.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst14020129</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorbates ; Adsorption ; Ammonia ; Chemical properties ; chemical reaction model ; Chemical reaction, Rate of ; Chemical reactions ; diffusion ; Diffusion rate ; Equilibrium ; Hydrogen ; Kinetics ; Materials research ; Nanocrystals ; Nitrogen ; phase transformation ; Phase transformations (Statistical physics) ; Phase transitions ; Thermodynamics ; Vapor phases</subject><ispartof>Crystals (Basel), 2024-01, Vol.14 (2), p.129</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-4486f97e1e6a34ef5fd1d5650326acbe34db61cc1745db4326833e8c3e6a80163</cites><orcidid>0000-0003-2326-0764 ; 0000-0002-0896-8839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2930580643/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2930580643?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Arabczyk, Walerian</creatorcontrib><creatorcontrib>Pelka, Rafał</creatorcontrib><creatorcontrib>Wilk, Bartłomiej</creatorcontrib><creatorcontrib>Lendzion-Bieluń, Zofia</creatorcontrib><title>Kinetics and Thermodynamics of the Phase Transformation in the Nanocrystalline Substance—Gas Phase System</title><title>Crystals (Basel)</title><description>This study presents a model of the reaction of a nanocrystalline substance within the gas phase, where diffusion of gas reactants in the volume of the nanocrystallites is a rate-limiting step. According to the model calculations carried out, the rate of diffusion across the phase boundary located on the nanocrystallite surface limits the rate of the process. It was stated that in chemical processes with a phase transformation, the critical concentration of absorbate depends on two factors: the specific active surface area of the adsorbent and the difference in chemical potentials between the gas phase and the equilibrium potential at which the phase transformation occurs. When the actual adsorbate potential in the gas phase is much greater than the equilibrium potential of the nanocrystallite with the largest specific active surface, nanocrystallites undergo phase changes in the order according to their specific active surfaces from the largest to the smallest. In a process where the actual adsorbate potential is close to an equilibrium one, nanocrystallites undergo phase transformation in the order of their specific active surface from the smallest to the largest.</description><subject>Adsorbates</subject><subject>Adsorption</subject><subject>Ammonia</subject><subject>Chemical properties</subject><subject>chemical reaction model</subject><subject>Chemical reaction, Rate of</subject><subject>Chemical reactions</subject><subject>diffusion</subject><subject>Diffusion rate</subject><subject>Equilibrium</subject><subject>Hydrogen</subject><subject>Kinetics</subject><subject>Materials research</subject><subject>Nanocrystals</subject><subject>Nitrogen</subject><subject>phase transformation</subject><subject>Phase transformations (Statistical physics)</subject><subject>Phase transitions</subject><subject>Thermodynamics</subject><subject>Vapor phases</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUcFu2zAMNYoVaNHl2LuBnt1JpizJxyDYsqLFNqDpWaBlqnEWS53kHHLrR-wL9yVVkmLYxIOIp_ceSbEorjm7BWjZJxv3aeKC1YzX7VlxWTMFlYCm_vBPflHMUtqwfJRkSvHL4uf94GkabCrR9-VqTXEM_d7jeICCK6c1lT_WmKhcRfTJhTjiNARfDv749g19OJbG7TY7lY-7Lufe0p_X30tM79rHTKDxY3HucJto9n5fFU9fPq8WX6uH78u7xfyhsiCbqRJCS9cq4iQRBLnG9bxvZMOglmg7AtF3klvLlWj6TmRUA5C2kPmacQlXxd3Jtw-4MS9xGDHuTcDBHIEQnw3GPPOWTNd20qJwzIlaSMVa5chBqxFaCbaB7HVz8nqJ4deO0mQ2YRd9bt_ULbBGMykOrNsT6xmz6eBdmCLaHD3ljwye3JDxudKCgeZCZ0F1EtgYUork_rbJmTns0_y3T3gDfemUfg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Arabczyk, Walerian</creator><creator>Pelka, Rafał</creator><creator>Wilk, Bartłomiej</creator><creator>Lendzion-Bieluń, Zofia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2326-0764</orcidid><orcidid>https://orcid.org/0000-0002-0896-8839</orcidid></search><sort><creationdate>20240101</creationdate><title>Kinetics and Thermodynamics of the Phase Transformation in the Nanocrystalline Substance—Gas Phase System</title><author>Arabczyk, Walerian ; Pelka, Rafał ; Wilk, Bartłomiej ; Lendzion-Bieluń, Zofia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-4486f97e1e6a34ef5fd1d5650326acbe34db61cc1745db4326833e8c3e6a80163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorbates</topic><topic>Adsorption</topic><topic>Ammonia</topic><topic>Chemical properties</topic><topic>chemical reaction model</topic><topic>Chemical reaction, Rate of</topic><topic>Chemical reactions</topic><topic>diffusion</topic><topic>Diffusion rate</topic><topic>Equilibrium</topic><topic>Hydrogen</topic><topic>Kinetics</topic><topic>Materials research</topic><topic>Nanocrystals</topic><topic>Nitrogen</topic><topic>phase transformation</topic><topic>Phase transformations (Statistical physics)</topic><topic>Phase transitions</topic><topic>Thermodynamics</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arabczyk, Walerian</creatorcontrib><creatorcontrib>Pelka, Rafał</creatorcontrib><creatorcontrib>Wilk, Bartłomiej</creatorcontrib><creatorcontrib>Lendzion-Bieluń, Zofia</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arabczyk, Walerian</au><au>Pelka, Rafał</au><au>Wilk, Bartłomiej</au><au>Lendzion-Bieluń, Zofia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics and Thermodynamics of the Phase Transformation in the Nanocrystalline Substance—Gas Phase System</atitle><jtitle>Crystals (Basel)</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><spage>129</spage><pages>129-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>This study presents a model of the reaction of a nanocrystalline substance within the gas phase, where diffusion of gas reactants in the volume of the nanocrystallites is a rate-limiting step. According to the model calculations carried out, the rate of diffusion across the phase boundary located on the nanocrystallite surface limits the rate of the process. It was stated that in chemical processes with a phase transformation, the critical concentration of absorbate depends on two factors: the specific active surface area of the adsorbent and the difference in chemical potentials between the gas phase and the equilibrium potential at which the phase transformation occurs. When the actual adsorbate potential in the gas phase is much greater than the equilibrium potential of the nanocrystallite with the largest specific active surface, nanocrystallites undergo phase changes in the order according to their specific active surfaces from the largest to the smallest. In a process where the actual adsorbate potential is close to an equilibrium one, nanocrystallites undergo phase transformation in the order of their specific active surface from the smallest to the largest.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst14020129</doi><orcidid>https://orcid.org/0000-0003-2326-0764</orcidid><orcidid>https://orcid.org/0000-0002-0896-8839</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4352
ispartof Crystals (Basel), 2024-01, Vol.14 (2), p.129
issn 2073-4352
2073-4352
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b9b6ca4f0f42467097fef398a3963c53
source ProQuest - Publicly Available Content Database
subjects Adsorbates
Adsorption
Ammonia
Chemical properties
chemical reaction model
Chemical reaction, Rate of
Chemical reactions
diffusion
Diffusion rate
Equilibrium
Hydrogen
Kinetics
Materials research
Nanocrystals
Nitrogen
phase transformation
Phase transformations (Statistical physics)
Phase transitions
Thermodynamics
Vapor phases
title Kinetics and Thermodynamics of the Phase Transformation in the Nanocrystalline Substance—Gas Phase System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20and%20Thermodynamics%20of%20the%20Phase%20Transformation%20in%20the%20Nanocrystalline%20Substance%E2%80%94Gas%20Phase%20System&rft.jtitle=Crystals%20(Basel)&rft.au=Arabczyk,%20Walerian&rft.date=2024-01-01&rft.volume=14&rft.issue=2&rft.spage=129&rft.pages=129-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst14020129&rft_dat=%3Cgale_doaj_%3EA784038148%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-4486f97e1e6a34ef5fd1d5650326acbe34db61cc1745db4326833e8c3e6a80163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930580643&rft_id=info:pmid/&rft_galeid=A784038148&rfr_iscdi=true