Loading…
Kinetics and Thermodynamics of the Phase Transformation in the Nanocrystalline Substance—Gas Phase System
This study presents a model of the reaction of a nanocrystalline substance within the gas phase, where diffusion of gas reactants in the volume of the nanocrystallites is a rate-limiting step. According to the model calculations carried out, the rate of diffusion across the phase boundary located on...
Saved in:
Published in: | Crystals (Basel) 2024-01, Vol.14 (2), p.129 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-4486f97e1e6a34ef5fd1d5650326acbe34db61cc1745db4326833e8c3e6a80163 |
container_end_page | |
container_issue | 2 |
container_start_page | 129 |
container_title | Crystals (Basel) |
container_volume | 14 |
creator | Arabczyk, Walerian Pelka, Rafał Wilk, Bartłomiej Lendzion-Bieluń, Zofia |
description | This study presents a model of the reaction of a nanocrystalline substance within the gas phase, where diffusion of gas reactants in the volume of the nanocrystallites is a rate-limiting step. According to the model calculations carried out, the rate of diffusion across the phase boundary located on the nanocrystallite surface limits the rate of the process. It was stated that in chemical processes with a phase transformation, the critical concentration of absorbate depends on two factors: the specific active surface area of the adsorbent and the difference in chemical potentials between the gas phase and the equilibrium potential at which the phase transformation occurs. When the actual adsorbate potential in the gas phase is much greater than the equilibrium potential of the nanocrystallite with the largest specific active surface, nanocrystallites undergo phase changes in the order according to their specific active surfaces from the largest to the smallest. In a process where the actual adsorbate potential is close to an equilibrium one, nanocrystallites undergo phase transformation in the order of their specific active surface from the smallest to the largest. |
doi_str_mv | 10.3390/cryst14020129 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b9b6ca4f0f42467097fef398a3963c53</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784038148</galeid><doaj_id>oai_doaj_org_article_b9b6ca4f0f42467097fef398a3963c53</doaj_id><sourcerecordid>A784038148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-4486f97e1e6a34ef5fd1d5650326acbe34db61cc1745db4326833e8c3e6a80163</originalsourceid><addsrcrecordid>eNpVUcFu2zAMNYoVaNHl2LuBnt1JpizJxyDYsqLFNqDpWaBlqnEWS53kHHLrR-wL9yVVkmLYxIOIp_ceSbEorjm7BWjZJxv3aeKC1YzX7VlxWTMFlYCm_vBPflHMUtqwfJRkSvHL4uf94GkabCrR9-VqTXEM_d7jeICCK6c1lT_WmKhcRfTJhTjiNARfDv749g19OJbG7TY7lY-7Lufe0p_X30tM79rHTKDxY3HucJto9n5fFU9fPq8WX6uH78u7xfyhsiCbqRJCS9cq4iQRBLnG9bxvZMOglmg7AtF3klvLlWj6TmRUA5C2kPmacQlXxd3Jtw-4MS9xGDHuTcDBHIEQnw3GPPOWTNd20qJwzIlaSMVa5chBqxFaCbaB7HVz8nqJ4deO0mQ2YRd9bt_ULbBGMykOrNsT6xmz6eBdmCLaHD3ljwye3JDxudKCgeZCZ0F1EtgYUork_rbJmTns0_y3T3gDfemUfg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930580643</pqid></control><display><type>article</type><title>Kinetics and Thermodynamics of the Phase Transformation in the Nanocrystalline Substance—Gas Phase System</title><source>ProQuest - Publicly Available Content Database</source><creator>Arabczyk, Walerian ; Pelka, Rafał ; Wilk, Bartłomiej ; Lendzion-Bieluń, Zofia</creator><creatorcontrib>Arabczyk, Walerian ; Pelka, Rafał ; Wilk, Bartłomiej ; Lendzion-Bieluń, Zofia</creatorcontrib><description>This study presents a model of the reaction of a nanocrystalline substance within the gas phase, where diffusion of gas reactants in the volume of the nanocrystallites is a rate-limiting step. According to the model calculations carried out, the rate of diffusion across the phase boundary located on the nanocrystallite surface limits the rate of the process. It was stated that in chemical processes with a phase transformation, the critical concentration of absorbate depends on two factors: the specific active surface area of the adsorbent and the difference in chemical potentials between the gas phase and the equilibrium potential at which the phase transformation occurs. When the actual adsorbate potential in the gas phase is much greater than the equilibrium potential of the nanocrystallite with the largest specific active surface, nanocrystallites undergo phase changes in the order according to their specific active surfaces from the largest to the smallest. In a process where the actual adsorbate potential is close to an equilibrium one, nanocrystallites undergo phase transformation in the order of their specific active surface from the smallest to the largest.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst14020129</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorbates ; Adsorption ; Ammonia ; Chemical properties ; chemical reaction model ; Chemical reaction, Rate of ; Chemical reactions ; diffusion ; Diffusion rate ; Equilibrium ; Hydrogen ; Kinetics ; Materials research ; Nanocrystals ; Nitrogen ; phase transformation ; Phase transformations (Statistical physics) ; Phase transitions ; Thermodynamics ; Vapor phases</subject><ispartof>Crystals (Basel), 2024-01, Vol.14 (2), p.129</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-4486f97e1e6a34ef5fd1d5650326acbe34db61cc1745db4326833e8c3e6a80163</cites><orcidid>0000-0003-2326-0764 ; 0000-0002-0896-8839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2930580643/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2930580643?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Arabczyk, Walerian</creatorcontrib><creatorcontrib>Pelka, Rafał</creatorcontrib><creatorcontrib>Wilk, Bartłomiej</creatorcontrib><creatorcontrib>Lendzion-Bieluń, Zofia</creatorcontrib><title>Kinetics and Thermodynamics of the Phase Transformation in the Nanocrystalline Substance—Gas Phase System</title><title>Crystals (Basel)</title><description>This study presents a model of the reaction of a nanocrystalline substance within the gas phase, where diffusion of gas reactants in the volume of the nanocrystallites is a rate-limiting step. According to the model calculations carried out, the rate of diffusion across the phase boundary located on the nanocrystallite surface limits the rate of the process. It was stated that in chemical processes with a phase transformation, the critical concentration of absorbate depends on two factors: the specific active surface area of the adsorbent and the difference in chemical potentials between the gas phase and the equilibrium potential at which the phase transformation occurs. When the actual adsorbate potential in the gas phase is much greater than the equilibrium potential of the nanocrystallite with the largest specific active surface, nanocrystallites undergo phase changes in the order according to their specific active surfaces from the largest to the smallest. In a process where the actual adsorbate potential is close to an equilibrium one, nanocrystallites undergo phase transformation in the order of their specific active surface from the smallest to the largest.</description><subject>Adsorbates</subject><subject>Adsorption</subject><subject>Ammonia</subject><subject>Chemical properties</subject><subject>chemical reaction model</subject><subject>Chemical reaction, Rate of</subject><subject>Chemical reactions</subject><subject>diffusion</subject><subject>Diffusion rate</subject><subject>Equilibrium</subject><subject>Hydrogen</subject><subject>Kinetics</subject><subject>Materials research</subject><subject>Nanocrystals</subject><subject>Nitrogen</subject><subject>phase transformation</subject><subject>Phase transformations (Statistical physics)</subject><subject>Phase transitions</subject><subject>Thermodynamics</subject><subject>Vapor phases</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUcFu2zAMNYoVaNHl2LuBnt1JpizJxyDYsqLFNqDpWaBlqnEWS53kHHLrR-wL9yVVkmLYxIOIp_ceSbEorjm7BWjZJxv3aeKC1YzX7VlxWTMFlYCm_vBPflHMUtqwfJRkSvHL4uf94GkabCrR9-VqTXEM_d7jeICCK6c1lT_WmKhcRfTJhTjiNARfDv749g19OJbG7TY7lY-7Lufe0p_X30tM79rHTKDxY3HucJto9n5fFU9fPq8WX6uH78u7xfyhsiCbqRJCS9cq4iQRBLnG9bxvZMOglmg7AtF3klvLlWj6TmRUA5C2kPmacQlXxd3Jtw-4MS9xGDHuTcDBHIEQnw3GPPOWTNd20qJwzIlaSMVa5chBqxFaCbaB7HVz8nqJ4deO0mQ2YRd9bt_ULbBGMykOrNsT6xmz6eBdmCLaHD3ljwye3JDxudKCgeZCZ0F1EtgYUork_rbJmTns0_y3T3gDfemUfg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Arabczyk, Walerian</creator><creator>Pelka, Rafał</creator><creator>Wilk, Bartłomiej</creator><creator>Lendzion-Bieluń, Zofia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2326-0764</orcidid><orcidid>https://orcid.org/0000-0002-0896-8839</orcidid></search><sort><creationdate>20240101</creationdate><title>Kinetics and Thermodynamics of the Phase Transformation in the Nanocrystalline Substance—Gas Phase System</title><author>Arabczyk, Walerian ; Pelka, Rafał ; Wilk, Bartłomiej ; Lendzion-Bieluń, Zofia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-4486f97e1e6a34ef5fd1d5650326acbe34db61cc1745db4326833e8c3e6a80163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorbates</topic><topic>Adsorption</topic><topic>Ammonia</topic><topic>Chemical properties</topic><topic>chemical reaction model</topic><topic>Chemical reaction, Rate of</topic><topic>Chemical reactions</topic><topic>diffusion</topic><topic>Diffusion rate</topic><topic>Equilibrium</topic><topic>Hydrogen</topic><topic>Kinetics</topic><topic>Materials research</topic><topic>Nanocrystals</topic><topic>Nitrogen</topic><topic>phase transformation</topic><topic>Phase transformations (Statistical physics)</topic><topic>Phase transitions</topic><topic>Thermodynamics</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arabczyk, Walerian</creatorcontrib><creatorcontrib>Pelka, Rafał</creatorcontrib><creatorcontrib>Wilk, Bartłomiej</creatorcontrib><creatorcontrib>Lendzion-Bieluń, Zofia</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arabczyk, Walerian</au><au>Pelka, Rafał</au><au>Wilk, Bartłomiej</au><au>Lendzion-Bieluń, Zofia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics and Thermodynamics of the Phase Transformation in the Nanocrystalline Substance—Gas Phase System</atitle><jtitle>Crystals (Basel)</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><spage>129</spage><pages>129-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>This study presents a model of the reaction of a nanocrystalline substance within the gas phase, where diffusion of gas reactants in the volume of the nanocrystallites is a rate-limiting step. According to the model calculations carried out, the rate of diffusion across the phase boundary located on the nanocrystallite surface limits the rate of the process. It was stated that in chemical processes with a phase transformation, the critical concentration of absorbate depends on two factors: the specific active surface area of the adsorbent and the difference in chemical potentials between the gas phase and the equilibrium potential at which the phase transformation occurs. When the actual adsorbate potential in the gas phase is much greater than the equilibrium potential of the nanocrystallite with the largest specific active surface, nanocrystallites undergo phase changes in the order according to their specific active surfaces from the largest to the smallest. In a process where the actual adsorbate potential is close to an equilibrium one, nanocrystallites undergo phase transformation in the order of their specific active surface from the smallest to the largest.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst14020129</doi><orcidid>https://orcid.org/0000-0003-2326-0764</orcidid><orcidid>https://orcid.org/0000-0002-0896-8839</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4352 |
ispartof | Crystals (Basel), 2024-01, Vol.14 (2), p.129 |
issn | 2073-4352 2073-4352 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b9b6ca4f0f42467097fef398a3963c53 |
source | ProQuest - Publicly Available Content Database |
subjects | Adsorbates Adsorption Ammonia Chemical properties chemical reaction model Chemical reaction, Rate of Chemical reactions diffusion Diffusion rate Equilibrium Hydrogen Kinetics Materials research Nanocrystals Nitrogen phase transformation Phase transformations (Statistical physics) Phase transitions Thermodynamics Vapor phases |
title | Kinetics and Thermodynamics of the Phase Transformation in the Nanocrystalline Substance—Gas Phase System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20and%20Thermodynamics%20of%20the%20Phase%20Transformation%20in%20the%20Nanocrystalline%20Substance%E2%80%94Gas%20Phase%20System&rft.jtitle=Crystals%20(Basel)&rft.au=Arabczyk,%20Walerian&rft.date=2024-01-01&rft.volume=14&rft.issue=2&rft.spage=129&rft.pages=129-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst14020129&rft_dat=%3Cgale_doaj_%3EA784038148%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-4486f97e1e6a34ef5fd1d5650326acbe34db61cc1745db4326833e8c3e6a80163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930580643&rft_id=info:pmid/&rft_galeid=A784038148&rfr_iscdi=true |