Loading…
Theoretical Method to Predict Internal Force of Crossbeam in Steel–Concrete Composite Twin I-Girder Bridge under Torsional Loading
During the operational phase of a bridge, the crossbeam, acting as a supporting member, plays an important role in keeping the cross-sectional shape constant in addition to resisting against various lateral and longitudinal loads and distributing the dead and the live loads to the adjacent main gird...
Saved in:
Published in: | Applied sciences 2023-05, Vol.13 (11), p.6669 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | During the operational phase of a bridge, the crossbeam, acting as a supporting member, plays an important role in keeping the cross-sectional shape constant in addition to resisting against various lateral and longitudinal loads and distributing the dead and the live loads to the adjacent main girders. The complex functional requirements lead to a complex internal force composition of the crossbeam. When subjected to torque, the two main beams of the twin I-girder bridge will have deformation in opposite longitudinal directions (known as warping deformation) to counteract the torque. The existing research has not considered the impact of main beam warping deformation on the internal force of the crossbeam. Based on the existing research, this article further considers the impact of main beam warping deformation on the internal force of the crossbeam, making the calculation of the internal force of the crossbeam more accurate. The results show that the torsional characteristics of the continuous twin I-girder bridge can be calculated using Vlasov’s theory of thin-walled structures combined with the displacement method. As for the effect of the crossbeam on the torsional stiffness of the structure, it can be managed by making the crossbeam stiffness continuous; however, in general, the equivalent stiffness is small compared to the stiffness of the main beam and it can be ignored. The crossbeam can be simplified to a bar with two solid ends for the internal force calculation whose formula is proposed in this paper, based on the existing frame model, and it can further consider the influence of warping deformation of the main beam on the internal force of the beam, and the calculation accuracy is high. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13116669 |