Loading…
Projected impacts of climate change on snow leopard habitat in Qinghai Province, China
Assessing species’ vulnerability to climate change is a prerequisite for developing effective strategies to reduce emerging climate‐related threats. We used the maximum entropy algorithm (MaxEnt model) to assess potential changes in suitable snow leopard (Panthera uncia) habitat in Qinghai Province,...
Saved in:
Published in: | Ecology and evolution 2021-12, Vol.11 (23), p.17202-17218 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Assessing species’ vulnerability to climate change is a prerequisite for developing effective strategies to reduce emerging climate‐related threats. We used the maximum entropy algorithm (MaxEnt model) to assess potential changes in suitable snow leopard (Panthera uncia) habitat in Qinghai Province, China, under a mild climate change scenario. Our results showed that the area of suitable snow leopard habitat in Qinghai Province was 302,821 km2 under current conditions and 228,997 km2 under the 2050s climatic scenario, with a mean upward shift in elevation of 90 m. At present, nature reserves protect 38.78% of currently suitable habitat and will protect 42.56% of future suitable habitat. Current areas of climate refugia amounted to 212,341 km2 and are mainly distributed in the Sanjiangyuan region, Qilian mountains, and surrounding areas. Our results provide valuable information for formulating strategies to meet future conservation challenges brought on by climate stress. We suggest that conservation efforts in Qinghai Province should focus on protecting areas of climate refugia and on maintaining or building corridors when planning for future species management.
Climate change challenges current snow leopard conservation efforts; identify refugia and corridors under climate change for species; and provide adaptation strategies to mitigate climate‐related threats to the species. |
---|---|
ISSN: | 2045-7758 2045-7758 |
DOI: | 10.1002/ece3.8358 |