Loading…

USP13 regulates the RAP80-BRCA1 complex dependent DNA damage response

BRCA1 regulates multiple cellular pathways that maintain genomic stability including cell cycle checkpoints, DNA repair, protein ubiquitination, chromatin remodelling, transcriptional regulation and apoptosis. Receptor-associated protein 80 (RAP80) helps recruit BRCA1 to double-strand breaks (DSBs)...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2017-06, Vol.8 (1), p.15752-15752, Article 15752
Main Authors: Li, Yunhui, Luo, Kuntian, Yin, Yujiao, Wu, Chenming, Deng, Min, Li, Lei, Chen, Yuping, Nowsheen, Somaira, Lou, Zhenkun, Yuan, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BRCA1 regulates multiple cellular pathways that maintain genomic stability including cell cycle checkpoints, DNA repair, protein ubiquitination, chromatin remodelling, transcriptional regulation and apoptosis. Receptor-associated protein 80 (RAP80) helps recruit BRCA1 to double-strand breaks (DSBs) through the scaffold protein CCDC98 (Abraxas) and facilitates DNA damage response (DDR). However, the regulation of RAP80-BRCA1 complex is still unclear. Here we report that a deubiquitinase, USP13, regulates DDR by targeting RAP80. Mechanistically, USP13 is phosphorylated by ATM following DNA damage which, in turn, facilitates its DSB localization. USP13, in turn, deubiquitinates RAP80 and promotes RAP80 recruitment and proper DDR. Depleting or inhibiting USP13 sensitizes ovarian cancer cells to cisplatin and PARP inhibitor (olaparib) while overexpression of USP13 renders ovarian cancer cells resistant to chemotherapy. Overall, we identify USP13 as a regulator of DNA repair and reveal a model in which a phosphorylation-deubiquitination axis dynamically regulates RAP80-BRCA1 complex foci formation and function. RAP80 helps to recruit BRCA1 to double-strand breaks, facilitating DNA damage responses. Here the authors report that phosphorylated USP13 deubiquitinates RAP80 after DNA damage, prompting recruitment to the break site.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms15752