Loading…

Social Media Opinion Analysis Model Based on Fusion of Text and Structural Features

The opinion recognition for comments in Internet media is a new task in text analysis. It takes comment statements as the research object, by learning the opinion tendency in the original text with annotation, and then performing opinion tendency recognition on the unannotated statements. However, d...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-06, Vol.13 (12), p.7221
Main Authors: Long, Jie, Li, Zihan, Xuan, Qi, Fu, Chenbo, Peng, Songtao, Min, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-df6268954541443c8f811ae9d0e135728f9199c615c103afcfcd45196966d8513
cites cdi_FETCH-LOGICAL-c403t-df6268954541443c8f811ae9d0e135728f9199c615c103afcfcd45196966d8513
container_end_page
container_issue 12
container_start_page 7221
container_title Applied sciences
container_volume 13
creator Long, Jie
Li, Zihan
Xuan, Qi
Fu, Chenbo
Peng, Songtao
Min, Yong
description The opinion recognition for comments in Internet media is a new task in text analysis. It takes comment statements as the research object, by learning the opinion tendency in the original text with annotation, and then performing opinion tendency recognition on the unannotated statements. However, due to the uncertainty of NLP (natural language processing) in short scenes and the complexity of Chinese text, existing methods have some limitations in accuracy and application scenarios. In this paper, we propose an opinion tendency recognition model HGAT (heterogeneous graph attention network) that integrates text vector and context structure methods to address the above problems. This method first trains a text vectorization model based on annotation text content, then constructs an isomorphic graph with annotation, news, and theme as its apex, and then optimizes the feature vectors of all nodes using an isomorphic graph neural network model with attention mechanism. In addition, this article collected 1,684,318 news items and 57,845,091 comments based on Toutiao, sifted through 511 of those stories and their corresponding 103,787 comments, and tested the impact of HGAT on this dataset. Experiments show that this method has stable improvement effect on different NLP methods, increasing accuracy by 2–10%, and provides a new perspective for opinion tendency recognition.
doi_str_mv 10.3390/app13127221
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b9ff67f928e4429cb5857329a4ca9614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A754973826</galeid><doaj_id>oai_doaj_org_article_b9ff67f928e4429cb5857329a4ca9614</doaj_id><sourcerecordid>A754973826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-df6268954541443c8f811ae9d0e135728f9199c615c103afcfcd45196966d8513</originalsourceid><addsrcrecordid>eNpNkU1rHDEMhofSQEOaU_-AoceyqeVvH7eh2wYSctjkbBR_BC-T8dSegebf19stJdJB4pX02EjD8AnoFeeWfsV5Bg5MMwbvhnNGtdpwAfr9m_zDcNnagXazwA3Q82G_Lz7jSO5iyEju5zzlMpHthONry43clRBH8g1bDKTru7UdyyWRh_h7ITgFsl_q6pe1dsYuYk9i-zicJRxbvPwXL4bH3feH65-b2_sfN9fb240XlC-bkBRTxkohBQjBvUkGAKMNNAKXmplkwVqvQHqgHJNPPggJVlmlgpHAL4abEzcUPLi55hesr65gdn-FUp8d1iX7Mbonm5LSyTIThWDWP0kjNWcWhUerQHTW5xNrruXXGtviDmWtfQ3NMcOsBsb48cWrU9czdmieUlkq-u4hvmRfpphy17daCqu5YaoPfDkN-FpaqzH9_yZQd7yae3M1_gdPvoaT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829712231</pqid></control><display><type>article</type><title>Social Media Opinion Analysis Model Based on Fusion of Text and Structural Features</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Long, Jie ; Li, Zihan ; Xuan, Qi ; Fu, Chenbo ; Peng, Songtao ; Min, Yong</creator><creatorcontrib>Long, Jie ; Li, Zihan ; Xuan, Qi ; Fu, Chenbo ; Peng, Songtao ; Min, Yong</creatorcontrib><description>The opinion recognition for comments in Internet media is a new task in text analysis. It takes comment statements as the research object, by learning the opinion tendency in the original text with annotation, and then performing opinion tendency recognition on the unannotated statements. However, due to the uncertainty of NLP (natural language processing) in short scenes and the complexity of Chinese text, existing methods have some limitations in accuracy and application scenarios. In this paper, we propose an opinion tendency recognition model HGAT (heterogeneous graph attention network) that integrates text vector and context structure methods to address the above problems. This method first trains a text vectorization model based on annotation text content, then constructs an isomorphic graph with annotation, news, and theme as its apex, and then optimizes the feature vectors of all nodes using an isomorphic graph neural network model with attention mechanism. In addition, this article collected 1,684,318 news items and 57,845,091 comments based on Toutiao, sifted through 511 of those stories and their corresponding 103,787 comments, and tested the impact of HGAT on this dataset. Experiments show that this method has stable improvement effect on different NLP methods, increasing accuracy by 2–10%, and provides a new perspective for opinion tendency recognition.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13127221</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Annotations ; Classification ; Computational linguistics ; Datasets ; Decision trees ; Dictionaries ; Feature recognition ; graph embedding ; graph neural network ; Graph neural networks ; Internet ; Language processing ; Methods ; Natural language interfaces ; natural language process ; Natural language processing ; Neural networks ; opinion tendency recognition ; Sentiment analysis ; Social media ; social network ; Social networks ; Text categorization</subject><ispartof>Applied sciences, 2023-06, Vol.13 (12), p.7221</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-df6268954541443c8f811ae9d0e135728f9199c615c103afcfcd45196966d8513</citedby><cites>FETCH-LOGICAL-c403t-df6268954541443c8f811ae9d0e135728f9199c615c103afcfcd45196966d8513</cites><orcidid>0000-0002-9387-3921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2829712231/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2829712231?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>Long, Jie</creatorcontrib><creatorcontrib>Li, Zihan</creatorcontrib><creatorcontrib>Xuan, Qi</creatorcontrib><creatorcontrib>Fu, Chenbo</creatorcontrib><creatorcontrib>Peng, Songtao</creatorcontrib><creatorcontrib>Min, Yong</creatorcontrib><title>Social Media Opinion Analysis Model Based on Fusion of Text and Structural Features</title><title>Applied sciences</title><description>The opinion recognition for comments in Internet media is a new task in text analysis. It takes comment statements as the research object, by learning the opinion tendency in the original text with annotation, and then performing opinion tendency recognition on the unannotated statements. However, due to the uncertainty of NLP (natural language processing) in short scenes and the complexity of Chinese text, existing methods have some limitations in accuracy and application scenarios. In this paper, we propose an opinion tendency recognition model HGAT (heterogeneous graph attention network) that integrates text vector and context structure methods to address the above problems. This method first trains a text vectorization model based on annotation text content, then constructs an isomorphic graph with annotation, news, and theme as its apex, and then optimizes the feature vectors of all nodes using an isomorphic graph neural network model with attention mechanism. In addition, this article collected 1,684,318 news items and 57,845,091 comments based on Toutiao, sifted through 511 of those stories and their corresponding 103,787 comments, and tested the impact of HGAT on this dataset. Experiments show that this method has stable improvement effect on different NLP methods, increasing accuracy by 2–10%, and provides a new perspective for opinion tendency recognition.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Annotations</subject><subject>Classification</subject><subject>Computational linguistics</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Dictionaries</subject><subject>Feature recognition</subject><subject>graph embedding</subject><subject>graph neural network</subject><subject>Graph neural networks</subject><subject>Internet</subject><subject>Language processing</subject><subject>Methods</subject><subject>Natural language interfaces</subject><subject>natural language process</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>opinion tendency recognition</subject><subject>Sentiment analysis</subject><subject>Social media</subject><subject>social network</subject><subject>Social networks</subject><subject>Text categorization</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1rHDEMhofSQEOaU_-AoceyqeVvH7eh2wYSctjkbBR_BC-T8dSegebf19stJdJB4pX02EjD8AnoFeeWfsV5Bg5MMwbvhnNGtdpwAfr9m_zDcNnagXazwA3Q82G_Lz7jSO5iyEju5zzlMpHthONry43clRBH8g1bDKTru7UdyyWRh_h7ITgFsl_q6pe1dsYuYk9i-zicJRxbvPwXL4bH3feH65-b2_sfN9fb240XlC-bkBRTxkohBQjBvUkGAKMNNAKXmplkwVqvQHqgHJNPPggJVlmlgpHAL4abEzcUPLi55hesr65gdn-FUp8d1iX7Mbonm5LSyTIThWDWP0kjNWcWhUerQHTW5xNrruXXGtviDmWtfQ3NMcOsBsb48cWrU9czdmieUlkq-u4hvmRfpphy17daCqu5YaoPfDkN-FpaqzH9_yZQd7yae3M1_gdPvoaT</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Long, Jie</creator><creator>Li, Zihan</creator><creator>Xuan, Qi</creator><creator>Fu, Chenbo</creator><creator>Peng, Songtao</creator><creator>Min, Yong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9387-3921</orcidid></search><sort><creationdate>20230601</creationdate><title>Social Media Opinion Analysis Model Based on Fusion of Text and Structural Features</title><author>Long, Jie ; Li, Zihan ; Xuan, Qi ; Fu, Chenbo ; Peng, Songtao ; Min, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-df6268954541443c8f811ae9d0e135728f9199c615c103afcfcd45196966d8513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Annotations</topic><topic>Classification</topic><topic>Computational linguistics</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Dictionaries</topic><topic>Feature recognition</topic><topic>graph embedding</topic><topic>graph neural network</topic><topic>Graph neural networks</topic><topic>Internet</topic><topic>Language processing</topic><topic>Methods</topic><topic>Natural language interfaces</topic><topic>natural language process</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>opinion tendency recognition</topic><topic>Sentiment analysis</topic><topic>Social media</topic><topic>social network</topic><topic>Social networks</topic><topic>Text categorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Jie</creatorcontrib><creatorcontrib>Li, Zihan</creatorcontrib><creatorcontrib>Xuan, Qi</creatorcontrib><creatorcontrib>Fu, Chenbo</creatorcontrib><creatorcontrib>Peng, Songtao</creatorcontrib><creatorcontrib>Min, Yong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Jie</au><au>Li, Zihan</au><au>Xuan, Qi</au><au>Fu, Chenbo</au><au>Peng, Songtao</au><au>Min, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social Media Opinion Analysis Model Based on Fusion of Text and Structural Features</atitle><jtitle>Applied sciences</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>13</volume><issue>12</issue><spage>7221</spage><pages>7221-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The opinion recognition for comments in Internet media is a new task in text analysis. It takes comment statements as the research object, by learning the opinion tendency in the original text with annotation, and then performing opinion tendency recognition on the unannotated statements. However, due to the uncertainty of NLP (natural language processing) in short scenes and the complexity of Chinese text, existing methods have some limitations in accuracy and application scenarios. In this paper, we propose an opinion tendency recognition model HGAT (heterogeneous graph attention network) that integrates text vector and context structure methods to address the above problems. This method first trains a text vectorization model based on annotation text content, then constructs an isomorphic graph with annotation, news, and theme as its apex, and then optimizes the feature vectors of all nodes using an isomorphic graph neural network model with attention mechanism. In addition, this article collected 1,684,318 news items and 57,845,091 comments based on Toutiao, sifted through 511 of those stories and their corresponding 103,787 comments, and tested the impact of HGAT on this dataset. Experiments show that this method has stable improvement effect on different NLP methods, increasing accuracy by 2–10%, and provides a new perspective for opinion tendency recognition.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13127221</doi><orcidid>https://orcid.org/0000-0002-9387-3921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-06, Vol.13 (12), p.7221
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b9ff67f928e4429cb5857329a4ca9614
source Publicly Available Content Database; Coronavirus Research Database
subjects Accuracy
Algorithms
Analysis
Annotations
Classification
Computational linguistics
Datasets
Decision trees
Dictionaries
Feature recognition
graph embedding
graph neural network
Graph neural networks
Internet
Language processing
Methods
Natural language interfaces
natural language process
Natural language processing
Neural networks
opinion tendency recognition
Sentiment analysis
Social media
social network
Social networks
Text categorization
title Social Media Opinion Analysis Model Based on Fusion of Text and Structural Features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social%20Media%20Opinion%20Analysis%20Model%20Based%20on%20Fusion%20of%20Text%20and%20Structural%20Features&rft.jtitle=Applied%20sciences&rft.au=Long,%20Jie&rft.date=2023-06-01&rft.volume=13&rft.issue=12&rft.spage=7221&rft.pages=7221-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13127221&rft_dat=%3Cgale_doaj_%3EA754973826%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-df6268954541443c8f811ae9d0e135728f9199c615c103afcfcd45196966d8513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829712231&rft_id=info:pmid/&rft_galeid=A754973826&rfr_iscdi=true