Loading…

Green Synthesis of Silver Nanoparticles with Size Distribution Depending on Reducing Species in Glycerol at Ambient pH and Temperatures

With an increase in biodiesel demand, a large surplus of glycerol is expected, and there is interest regarding the usage of glycerol as a value-added product. One such idea is to use glycerol as a “green solvent” to replace petroleum-based organic solvents. Glycerol is nontoxic to humans, and its va...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2020-07, Vol.5 (26), p.16246-16254
Main Authors: Liu, Tianhao, Baek, Da Rae, Kim, Jae Seok, Joo, Sang-Woo, Lim, Jong Kuk
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With an increase in biodiesel demand, a large surplus of glycerol is expected, and there is interest regarding the usage of glycerol as a value-added product. One such idea is to use glycerol as a “green solvent” to replace petroleum-based organic solvents. Glycerol is nontoxic to humans, and its vapor pressure is sufficiently high for the chemical reaction to be performed at high temperatures under ambient atmospheric pressures. Its dielectric constant is between those of water and organic solvents, and it dissolves widely varying materials, spanning between salts and organic molecules. Metal nanoparticles have been known to be synthesized in glycerol within limited experimental conditions, including high temperatures, alkaline pH conditions, and the irradiance of ultraviolet light. Herein, we report that silver nanoparticles have been formed in glycerol under completely green conditions (e.g., room temperature, neutral pH conditions, and without irradiance of ultraviolet light). We suggest that aldehydes and free radicals are generated in glycerol, which is operating as reducing species.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.0c02066