Loading…
A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network
To solve the problems of difficult to model parameter selections, useful signal extraction and improper-signal decomposition in nonlinear, non-stationary dam displacement time series prediction methods, we propose a new predictive model for grey wolf optimization and variational mode decomposition a...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-11, Vol.16 (21), p.3978 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-73aed9d28084c64f4762783d2af6363ab9a5d0738f0fabce6ed27a7837166cf43 |
container_end_page | |
container_issue | 21 |
container_start_page | 3978 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 16 |
creator | Sun, Xiwen Lu, Tieding Hu, Shunqiang Wang, Haicheng Wang, Ziyu He, Xiaoxing Ding, Hongqiang Zhang, Yuntao |
description | To solve the problems of difficult to model parameter selections, useful signal extraction and improper-signal decomposition in nonlinear, non-stationary dam displacement time series prediction methods, we propose a new predictive model for grey wolf optimization and variational mode decomposition and long short-term memory (GVLSTM). Firstly, we used the grey wolf optimization (GWO) algorithm to optimize the parameters of variable mode decomposition (VMD), obtaining the optimal parameter combination. Secondly, we used multiscale permutation entropy (MPE) as a standard to select signal screening, determining and recon-structing the effective modal components. Finally, the long short-term memory neural network (LSTM) was used to learn the dam deformation characteristics. The result shows that the GVLSTM model can effectively reduce the estimation deviation of the prediction model. Compared with VMDGRU and VMDANN, the average RMSE and MAE value of each station is increased by 19.11%~28.58% and 27.66%~29.63%, respectively. We used determination (R2) coefficient to judge the performance of the prediction model, and the value of R2 was 0.95~0.97, indicating that our method has good performance in predicting dam deformation. The proposed method has outstanding advantages of high accuracy, reliability, and stability for dam deformation prediction. |
doi_str_mv | 10.3390/rs16213978 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ba2216df089247b88b85778c22db8930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815421334</galeid><doaj_id>oai_doaj_org_article_ba2216df089247b88b85778c22db8930</doaj_id><sourcerecordid>A815421334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-73aed9d28084c64f4762783d2af6363ab9a5d0738f0fabce6ed27a7837166cf43</originalsourceid><addsrcrecordid>eNpNkVtvEzEQhVcVSK3avvALLPGGtMWXjS-PUQulUmiRaOHRmvUlddiNw6yjXn59nQYB9oOtM5-PZ3Sa5h2jZ0IY-hEnJjkTRumD5ohTxduOG_7mv_thczpNK1qXEMzQ7qh5nJPr8EDmwzJjKvcjiRnJNww-uZLWS3IBI7kIVRyhpLwmd9NOvcTwRH7mIbY3m5LG9Bw8-QGYXhkYyNfsA1nkSn6_z1ja24Bj_WeLtXYdykPGXyfN2wjDFE7_nMfN3edPt-df2sXN5dX5fNE6rk1plYDgjeea6s7JLnZKcqWF5xClkAJ6AzNPldCRRuhdkMFzBZVQTEoXO3HcXO19fYaV3WAaAZ9shmRfhYxLC1iSG4LtgXMmfaTa8E71Wvd6ppR2nPteG0Gr1_u91wbz722Yil3lLdaBJysYl5RpymeVOttTS6imaR1zQXB1-zAml9chpqrPNZt1NS2xa_HD_oHDPE0Y4t82GbW7ZO2_ZMULvXOUWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126018025</pqid></control><display><type>article</type><title>A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network</title><source>ProQuest Publicly Available Content database</source><creator>Sun, Xiwen ; Lu, Tieding ; Hu, Shunqiang ; Wang, Haicheng ; Wang, Ziyu ; He, Xiaoxing ; Ding, Hongqiang ; Zhang, Yuntao</creator><creatorcontrib>Sun, Xiwen ; Lu, Tieding ; Hu, Shunqiang ; Wang, Haicheng ; Wang, Ziyu ; He, Xiaoxing ; Ding, Hongqiang ; Zhang, Yuntao</creatorcontrib><description>To solve the problems of difficult to model parameter selections, useful signal extraction and improper-signal decomposition in nonlinear, non-stationary dam displacement time series prediction methods, we propose a new predictive model for grey wolf optimization and variational mode decomposition and long short-term memory (GVLSTM). Firstly, we used the grey wolf optimization (GWO) algorithm to optimize the parameters of variable mode decomposition (VMD), obtaining the optimal parameter combination. Secondly, we used multiscale permutation entropy (MPE) as a standard to select signal screening, determining and recon-structing the effective modal components. Finally, the long short-term memory neural network (LSTM) was used to learn the dam deformation characteristics. The result shows that the GVLSTM model can effectively reduce the estimation deviation of the prediction model. Compared with VMDGRU and VMDANN, the average RMSE and MAE value of each station is increased by 19.11%~28.58% and 27.66%~29.63%, respectively. We used determination (R2) coefficient to judge the performance of the prediction model, and the value of R2 was 0.95~0.97, indicating that our method has good performance in predicting dam deformation. The proposed method has outstanding advantages of high accuracy, reliability, and stability for dam deformation prediction.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs16213978</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Animal populations ; Artificial intelligence ; dam deformation prediction ; Dam stability ; Decomposition ; Deep learning ; Deformation effects ; grey wolf optimization ; Hunting ; Lagrange multiplier ; Long short-term memory ; Neural networks ; Optimization ; Parameters ; Permutations ; Prediction models ; Predictions ; Support vector machines ; Time series ; variational mode decomposition ; Wolves</subject><ispartof>Remote sensing (Basel, Switzerland), 2024-11, Vol.16 (21), p.3978</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-73aed9d28084c64f4762783d2af6363ab9a5d0738f0fabce6ed27a7837166cf43</cites><orcidid>0000-0001-9956-4380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126018025/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126018025?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Sun, Xiwen</creatorcontrib><creatorcontrib>Lu, Tieding</creatorcontrib><creatorcontrib>Hu, Shunqiang</creatorcontrib><creatorcontrib>Wang, Haicheng</creatorcontrib><creatorcontrib>Wang, Ziyu</creatorcontrib><creatorcontrib>He, Xiaoxing</creatorcontrib><creatorcontrib>Ding, Hongqiang</creatorcontrib><creatorcontrib>Zhang, Yuntao</creatorcontrib><title>A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network</title><title>Remote sensing (Basel, Switzerland)</title><description>To solve the problems of difficult to model parameter selections, useful signal extraction and improper-signal decomposition in nonlinear, non-stationary dam displacement time series prediction methods, we propose a new predictive model for grey wolf optimization and variational mode decomposition and long short-term memory (GVLSTM). Firstly, we used the grey wolf optimization (GWO) algorithm to optimize the parameters of variable mode decomposition (VMD), obtaining the optimal parameter combination. Secondly, we used multiscale permutation entropy (MPE) as a standard to select signal screening, determining and recon-structing the effective modal components. Finally, the long short-term memory neural network (LSTM) was used to learn the dam deformation characteristics. The result shows that the GVLSTM model can effectively reduce the estimation deviation of the prediction model. Compared with VMDGRU and VMDANN, the average RMSE and MAE value of each station is increased by 19.11%~28.58% and 27.66%~29.63%, respectively. We used determination (R2) coefficient to judge the performance of the prediction model, and the value of R2 was 0.95~0.97, indicating that our method has good performance in predicting dam deformation. The proposed method has outstanding advantages of high accuracy, reliability, and stability for dam deformation prediction.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Animal populations</subject><subject>Artificial intelligence</subject><subject>dam deformation prediction</subject><subject>Dam stability</subject><subject>Decomposition</subject><subject>Deep learning</subject><subject>Deformation effects</subject><subject>grey wolf optimization</subject><subject>Hunting</subject><subject>Lagrange multiplier</subject><subject>Long short-term memory</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Permutations</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Support vector machines</subject><subject>Time series</subject><subject>variational mode decomposition</subject><subject>Wolves</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtvEzEQhVcVSK3avvALLPGGtMWXjS-PUQulUmiRaOHRmvUlddiNw6yjXn59nQYB9oOtM5-PZ3Sa5h2jZ0IY-hEnJjkTRumD5ohTxduOG_7mv_thczpNK1qXEMzQ7qh5nJPr8EDmwzJjKvcjiRnJNww-uZLWS3IBI7kIVRyhpLwmd9NOvcTwRH7mIbY3m5LG9Bw8-QGYXhkYyNfsA1nkSn6_z1ja24Bj_WeLtXYdykPGXyfN2wjDFE7_nMfN3edPt-df2sXN5dX5fNE6rk1plYDgjeea6s7JLnZKcqWF5xClkAJ6AzNPldCRRuhdkMFzBZVQTEoXO3HcXO19fYaV3WAaAZ9shmRfhYxLC1iSG4LtgXMmfaTa8E71Wvd6ppR2nPteG0Gr1_u91wbz722Yil3lLdaBJysYl5RpymeVOttTS6imaR1zQXB1-zAml9chpqrPNZt1NS2xa_HD_oHDPE0Y4t82GbW7ZO2_ZMULvXOUWA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Sun, Xiwen</creator><creator>Lu, Tieding</creator><creator>Hu, Shunqiang</creator><creator>Wang, Haicheng</creator><creator>Wang, Ziyu</creator><creator>He, Xiaoxing</creator><creator>Ding, Hongqiang</creator><creator>Zhang, Yuntao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9956-4380</orcidid></search><sort><creationdate>20241101</creationdate><title>A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network</title><author>Sun, Xiwen ; Lu, Tieding ; Hu, Shunqiang ; Wang, Haicheng ; Wang, Ziyu ; He, Xiaoxing ; Ding, Hongqiang ; Zhang, Yuntao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-73aed9d28084c64f4762783d2af6363ab9a5d0738f0fabce6ed27a7837166cf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Animal populations</topic><topic>Artificial intelligence</topic><topic>dam deformation prediction</topic><topic>Dam stability</topic><topic>Decomposition</topic><topic>Deep learning</topic><topic>Deformation effects</topic><topic>grey wolf optimization</topic><topic>Hunting</topic><topic>Lagrange multiplier</topic><topic>Long short-term memory</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Permutations</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Support vector machines</topic><topic>Time series</topic><topic>variational mode decomposition</topic><topic>Wolves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xiwen</creatorcontrib><creatorcontrib>Lu, Tieding</creatorcontrib><creatorcontrib>Hu, Shunqiang</creatorcontrib><creatorcontrib>Wang, Haicheng</creatorcontrib><creatorcontrib>Wang, Ziyu</creatorcontrib><creatorcontrib>He, Xiaoxing</creatorcontrib><creatorcontrib>Ding, Hongqiang</creatorcontrib><creatorcontrib>Zhang, Yuntao</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xiwen</au><au>Lu, Tieding</au><au>Hu, Shunqiang</au><au>Wang, Haicheng</au><au>Wang, Ziyu</au><au>He, Xiaoxing</au><au>Ding, Hongqiang</au><au>Zhang, Yuntao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>16</volume><issue>21</issue><spage>3978</spage><pages>3978-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>To solve the problems of difficult to model parameter selections, useful signal extraction and improper-signal decomposition in nonlinear, non-stationary dam displacement time series prediction methods, we propose a new predictive model for grey wolf optimization and variational mode decomposition and long short-term memory (GVLSTM). Firstly, we used the grey wolf optimization (GWO) algorithm to optimize the parameters of variable mode decomposition (VMD), obtaining the optimal parameter combination. Secondly, we used multiscale permutation entropy (MPE) as a standard to select signal screening, determining and recon-structing the effective modal components. Finally, the long short-term memory neural network (LSTM) was used to learn the dam deformation characteristics. The result shows that the GVLSTM model can effectively reduce the estimation deviation of the prediction model. Compared with VMDGRU and VMDANN, the average RMSE and MAE value of each station is increased by 19.11%~28.58% and 27.66%~29.63%, respectively. We used determination (R2) coefficient to judge the performance of the prediction model, and the value of R2 was 0.95~0.97, indicating that our method has good performance in predicting dam deformation. The proposed method has outstanding advantages of high accuracy, reliability, and stability for dam deformation prediction.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs16213978</doi><orcidid>https://orcid.org/0000-0001-9956-4380</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2024-11, Vol.16 (21), p.3978 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ba2216df089247b88b85778c22db8930 |
source | ProQuest Publicly Available Content database |
subjects | Accuracy Algorithms Analysis Animal populations Artificial intelligence dam deformation prediction Dam stability Decomposition Deep learning Deformation effects grey wolf optimization Hunting Lagrange multiplier Long short-term memory Neural networks Optimization Parameters Permutations Prediction models Predictions Support vector machines Time series variational mode decomposition Wolves |
title | A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Algorithm%20for%20Predicting%20Dam%20Deformation%20Using%20Grey%20Wolf-Optimized%20Variational%20Mode%20Long%20Short-Term%20Neural%20Network&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Sun,%20Xiwen&rft.date=2024-11-01&rft.volume=16&rft.issue=21&rft.spage=3978&rft.pages=3978-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs16213978&rft_dat=%3Cgale_doaj_%3EA815421334%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-73aed9d28084c64f4762783d2af6363ab9a5d0738f0fabce6ed27a7837166cf43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126018025&rft_id=info:pmid/&rft_galeid=A815421334&rfr_iscdi=true |