Loading…

A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network

To solve the problems of difficult to model parameter selections, useful signal extraction and improper-signal decomposition in nonlinear, non-stationary dam displacement time series prediction methods, we propose a new predictive model for grey wolf optimization and variational mode decomposition a...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2024-11, Vol.16 (21), p.3978
Main Authors: Sun, Xiwen, Lu, Tieding, Hu, Shunqiang, Wang, Haicheng, Wang, Ziyu, He, Xiaoxing, Ding, Hongqiang, Zhang, Yuntao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-73aed9d28084c64f4762783d2af6363ab9a5d0738f0fabce6ed27a7837166cf43
container_end_page
container_issue 21
container_start_page 3978
container_title Remote sensing (Basel, Switzerland)
container_volume 16
creator Sun, Xiwen
Lu, Tieding
Hu, Shunqiang
Wang, Haicheng
Wang, Ziyu
He, Xiaoxing
Ding, Hongqiang
Zhang, Yuntao
description To solve the problems of difficult to model parameter selections, useful signal extraction and improper-signal decomposition in nonlinear, non-stationary dam displacement time series prediction methods, we propose a new predictive model for grey wolf optimization and variational mode decomposition and long short-term memory (GVLSTM). Firstly, we used the grey wolf optimization (GWO) algorithm to optimize the parameters of variable mode decomposition (VMD), obtaining the optimal parameter combination. Secondly, we used multiscale permutation entropy (MPE) as a standard to select signal screening, determining and recon-structing the effective modal components. Finally, the long short-term memory neural network (LSTM) was used to learn the dam deformation characteristics. The result shows that the GVLSTM model can effectively reduce the estimation deviation of the prediction model. Compared with VMDGRU and VMDANN, the average RMSE and MAE value of each station is increased by 19.11%~28.58% and 27.66%~29.63%, respectively. We used determination (R2) coefficient to judge the performance of the prediction model, and the value of R2 was 0.95~0.97, indicating that our method has good performance in predicting dam deformation. The proposed method has outstanding advantages of high accuracy, reliability, and stability for dam deformation prediction.
doi_str_mv 10.3390/rs16213978
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ba2216df089247b88b85778c22db8930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815421334</galeid><doaj_id>oai_doaj_org_article_ba2216df089247b88b85778c22db8930</doaj_id><sourcerecordid>A815421334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-73aed9d28084c64f4762783d2af6363ab9a5d0738f0fabce6ed27a7837166cf43</originalsourceid><addsrcrecordid>eNpNkVtvEzEQhVcVSK3avvALLPGGtMWXjS-PUQulUmiRaOHRmvUlddiNw6yjXn59nQYB9oOtM5-PZ3Sa5h2jZ0IY-hEnJjkTRumD5ohTxduOG_7mv_thczpNK1qXEMzQ7qh5nJPr8EDmwzJjKvcjiRnJNww-uZLWS3IBI7kIVRyhpLwmd9NOvcTwRH7mIbY3m5LG9Bw8-QGYXhkYyNfsA1nkSn6_z1ja24Bj_WeLtXYdykPGXyfN2wjDFE7_nMfN3edPt-df2sXN5dX5fNE6rk1plYDgjeea6s7JLnZKcqWF5xClkAJ6AzNPldCRRuhdkMFzBZVQTEoXO3HcXO19fYaV3WAaAZ9shmRfhYxLC1iSG4LtgXMmfaTa8E71Wvd6ppR2nPteG0Gr1_u91wbz722Yil3lLdaBJysYl5RpymeVOttTS6imaR1zQXB1-zAml9chpqrPNZt1NS2xa_HD_oHDPE0Y4t82GbW7ZO2_ZMULvXOUWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126018025</pqid></control><display><type>article</type><title>A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network</title><source>ProQuest Publicly Available Content database</source><creator>Sun, Xiwen ; Lu, Tieding ; Hu, Shunqiang ; Wang, Haicheng ; Wang, Ziyu ; He, Xiaoxing ; Ding, Hongqiang ; Zhang, Yuntao</creator><creatorcontrib>Sun, Xiwen ; Lu, Tieding ; Hu, Shunqiang ; Wang, Haicheng ; Wang, Ziyu ; He, Xiaoxing ; Ding, Hongqiang ; Zhang, Yuntao</creatorcontrib><description>To solve the problems of difficult to model parameter selections, useful signal extraction and improper-signal decomposition in nonlinear, non-stationary dam displacement time series prediction methods, we propose a new predictive model for grey wolf optimization and variational mode decomposition and long short-term memory (GVLSTM). Firstly, we used the grey wolf optimization (GWO) algorithm to optimize the parameters of variable mode decomposition (VMD), obtaining the optimal parameter combination. Secondly, we used multiscale permutation entropy (MPE) as a standard to select signal screening, determining and recon-structing the effective modal components. Finally, the long short-term memory neural network (LSTM) was used to learn the dam deformation characteristics. The result shows that the GVLSTM model can effectively reduce the estimation deviation of the prediction model. Compared with VMDGRU and VMDANN, the average RMSE and MAE value of each station is increased by 19.11%~28.58% and 27.66%~29.63%, respectively. We used determination (R2) coefficient to judge the performance of the prediction model, and the value of R2 was 0.95~0.97, indicating that our method has good performance in predicting dam deformation. The proposed method has outstanding advantages of high accuracy, reliability, and stability for dam deformation prediction.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs16213978</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Animal populations ; Artificial intelligence ; dam deformation prediction ; Dam stability ; Decomposition ; Deep learning ; Deformation effects ; grey wolf optimization ; Hunting ; Lagrange multiplier ; Long short-term memory ; Neural networks ; Optimization ; Parameters ; Permutations ; Prediction models ; Predictions ; Support vector machines ; Time series ; variational mode decomposition ; Wolves</subject><ispartof>Remote sensing (Basel, Switzerland), 2024-11, Vol.16 (21), p.3978</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-73aed9d28084c64f4762783d2af6363ab9a5d0738f0fabce6ed27a7837166cf43</cites><orcidid>0000-0001-9956-4380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126018025/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126018025?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Sun, Xiwen</creatorcontrib><creatorcontrib>Lu, Tieding</creatorcontrib><creatorcontrib>Hu, Shunqiang</creatorcontrib><creatorcontrib>Wang, Haicheng</creatorcontrib><creatorcontrib>Wang, Ziyu</creatorcontrib><creatorcontrib>He, Xiaoxing</creatorcontrib><creatorcontrib>Ding, Hongqiang</creatorcontrib><creatorcontrib>Zhang, Yuntao</creatorcontrib><title>A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network</title><title>Remote sensing (Basel, Switzerland)</title><description>To solve the problems of difficult to model parameter selections, useful signal extraction and improper-signal decomposition in nonlinear, non-stationary dam displacement time series prediction methods, we propose a new predictive model for grey wolf optimization and variational mode decomposition and long short-term memory (GVLSTM). Firstly, we used the grey wolf optimization (GWO) algorithm to optimize the parameters of variable mode decomposition (VMD), obtaining the optimal parameter combination. Secondly, we used multiscale permutation entropy (MPE) as a standard to select signal screening, determining and recon-structing the effective modal components. Finally, the long short-term memory neural network (LSTM) was used to learn the dam deformation characteristics. The result shows that the GVLSTM model can effectively reduce the estimation deviation of the prediction model. Compared with VMDGRU and VMDANN, the average RMSE and MAE value of each station is increased by 19.11%~28.58% and 27.66%~29.63%, respectively. We used determination (R2) coefficient to judge the performance of the prediction model, and the value of R2 was 0.95~0.97, indicating that our method has good performance in predicting dam deformation. The proposed method has outstanding advantages of high accuracy, reliability, and stability for dam deformation prediction.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Animal populations</subject><subject>Artificial intelligence</subject><subject>dam deformation prediction</subject><subject>Dam stability</subject><subject>Decomposition</subject><subject>Deep learning</subject><subject>Deformation effects</subject><subject>grey wolf optimization</subject><subject>Hunting</subject><subject>Lagrange multiplier</subject><subject>Long short-term memory</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Permutations</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Support vector machines</subject><subject>Time series</subject><subject>variational mode decomposition</subject><subject>Wolves</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtvEzEQhVcVSK3avvALLPGGtMWXjS-PUQulUmiRaOHRmvUlddiNw6yjXn59nQYB9oOtM5-PZ3Sa5h2jZ0IY-hEnJjkTRumD5ohTxduOG_7mv_thczpNK1qXEMzQ7qh5nJPr8EDmwzJjKvcjiRnJNww-uZLWS3IBI7kIVRyhpLwmd9NOvcTwRH7mIbY3m5LG9Bw8-QGYXhkYyNfsA1nkSn6_z1ja24Bj_WeLtXYdykPGXyfN2wjDFE7_nMfN3edPt-df2sXN5dX5fNE6rk1plYDgjeea6s7JLnZKcqWF5xClkAJ6AzNPldCRRuhdkMFzBZVQTEoXO3HcXO19fYaV3WAaAZ9shmRfhYxLC1iSG4LtgXMmfaTa8E71Wvd6ppR2nPteG0Gr1_u91wbz722Yil3lLdaBJysYl5RpymeVOttTS6imaR1zQXB1-zAml9chpqrPNZt1NS2xa_HD_oHDPE0Y4t82GbW7ZO2_ZMULvXOUWA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Sun, Xiwen</creator><creator>Lu, Tieding</creator><creator>Hu, Shunqiang</creator><creator>Wang, Haicheng</creator><creator>Wang, Ziyu</creator><creator>He, Xiaoxing</creator><creator>Ding, Hongqiang</creator><creator>Zhang, Yuntao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9956-4380</orcidid></search><sort><creationdate>20241101</creationdate><title>A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network</title><author>Sun, Xiwen ; Lu, Tieding ; Hu, Shunqiang ; Wang, Haicheng ; Wang, Ziyu ; He, Xiaoxing ; Ding, Hongqiang ; Zhang, Yuntao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-73aed9d28084c64f4762783d2af6363ab9a5d0738f0fabce6ed27a7837166cf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Animal populations</topic><topic>Artificial intelligence</topic><topic>dam deformation prediction</topic><topic>Dam stability</topic><topic>Decomposition</topic><topic>Deep learning</topic><topic>Deformation effects</topic><topic>grey wolf optimization</topic><topic>Hunting</topic><topic>Lagrange multiplier</topic><topic>Long short-term memory</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Permutations</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Support vector machines</topic><topic>Time series</topic><topic>variational mode decomposition</topic><topic>Wolves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xiwen</creatorcontrib><creatorcontrib>Lu, Tieding</creatorcontrib><creatorcontrib>Hu, Shunqiang</creatorcontrib><creatorcontrib>Wang, Haicheng</creatorcontrib><creatorcontrib>Wang, Ziyu</creatorcontrib><creatorcontrib>He, Xiaoxing</creatorcontrib><creatorcontrib>Ding, Hongqiang</creatorcontrib><creatorcontrib>Zhang, Yuntao</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xiwen</au><au>Lu, Tieding</au><au>Hu, Shunqiang</au><au>Wang, Haicheng</au><au>Wang, Ziyu</au><au>He, Xiaoxing</au><au>Ding, Hongqiang</au><au>Zhang, Yuntao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>16</volume><issue>21</issue><spage>3978</spage><pages>3978-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>To solve the problems of difficult to model parameter selections, useful signal extraction and improper-signal decomposition in nonlinear, non-stationary dam displacement time series prediction methods, we propose a new predictive model for grey wolf optimization and variational mode decomposition and long short-term memory (GVLSTM). Firstly, we used the grey wolf optimization (GWO) algorithm to optimize the parameters of variable mode decomposition (VMD), obtaining the optimal parameter combination. Secondly, we used multiscale permutation entropy (MPE) as a standard to select signal screening, determining and recon-structing the effective modal components. Finally, the long short-term memory neural network (LSTM) was used to learn the dam deformation characteristics. The result shows that the GVLSTM model can effectively reduce the estimation deviation of the prediction model. Compared with VMDGRU and VMDANN, the average RMSE and MAE value of each station is increased by 19.11%~28.58% and 27.66%~29.63%, respectively. We used determination (R2) coefficient to judge the performance of the prediction model, and the value of R2 was 0.95~0.97, indicating that our method has good performance in predicting dam deformation. The proposed method has outstanding advantages of high accuracy, reliability, and stability for dam deformation prediction.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs16213978</doi><orcidid>https://orcid.org/0000-0001-9956-4380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2024-11, Vol.16 (21), p.3978
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ba2216df089247b88b85778c22db8930
source ProQuest Publicly Available Content database
subjects Accuracy
Algorithms
Analysis
Animal populations
Artificial intelligence
dam deformation prediction
Dam stability
Decomposition
Deep learning
Deformation effects
grey wolf optimization
Hunting
Lagrange multiplier
Long short-term memory
Neural networks
Optimization
Parameters
Permutations
Prediction models
Predictions
Support vector machines
Time series
variational mode decomposition
Wolves
title A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Algorithm%20for%20Predicting%20Dam%20Deformation%20Using%20Grey%20Wolf-Optimized%20Variational%20Mode%20Long%20Short-Term%20Neural%20Network&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Sun,%20Xiwen&rft.date=2024-11-01&rft.volume=16&rft.issue=21&rft.spage=3978&rft.pages=3978-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs16213978&rft_dat=%3Cgale_doaj_%3EA815421334%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-73aed9d28084c64f4762783d2af6363ab9a5d0738f0fabce6ed27a7837166cf43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126018025&rft_id=info:pmid/&rft_galeid=A815421334&rfr_iscdi=true