Loading…

Investigating ENSO and its teleconnections under climate change in an ensemble view – a new perspective

The changes in the El Niño–Southern Oscillation (ENSO) phenomenon and its precipitation-related teleconnections over the globe under climate change are investigated in the Community Earth System Model Large Ensemble from 1950 to 2100. For the investigation, a recently developed ensemble-based method...

Full description

Saved in:
Bibliographic Details
Published in:Earth system dynamics 2020-03, Vol.11 (1), p.267-280
Main Authors: Haszpra, Tímea, Herein, Mátyás, Bódai, Tamás
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-36ce001a7cf336a427f3d0091bd7b02ef55b830d1d5a3d5b293d0bebd5dc9c813
cites cdi_FETCH-LOGICAL-c477t-36ce001a7cf336a427f3d0091bd7b02ef55b830d1d5a3d5b293d0bebd5dc9c813
container_end_page 280
container_issue 1
container_start_page 267
container_title Earth system dynamics
container_volume 11
creator Haszpra, Tímea
Herein, Mátyás
Bódai, Tamás
description The changes in the El Niño–Southern Oscillation (ENSO) phenomenon and its precipitation-related teleconnections over the globe under climate change are investigated in the Community Earth System Model Large Ensemble from 1950 to 2100. For the investigation, a recently developed ensemble-based method, the snapshot empirical orthogonal function (SEOF) analysis, is used. The instantaneous ENSO pattern is defined as the leading mode of the SEOF analysis carried out at a given time instant over the ensemble. The corresponding principal components (PC1s) characterize the ENSO phases. By considering sea surface temperature (SST) regression maps, we find that the largest changes in the typical amplitude of SST fluctuations occur in the June–July–August–September (JJAS) season, in the Niño3–Niño3.4 (5∘ N–5∘ S, 170–90∘ W; NOAA Climate Prediction Center) region, and the western part of the Pacific Ocean; however, the increase is also considerable along the Equator in December–January–February (DJF). The Niño3 amplitude also shows an increase of about 20 % and 10 % in JJAS and DJF, respectively. The strength of the precipitation-related teleconnections of the ENSO is found to be nonstationary, as well. For example, the anticorrelation with precipitation in Australia in JJAS and the positive correlation in central and northern Africa in DJF are predicted to be more pronounced by the end of the 21th century. Half-year-lagged correlations, aiming to predict precipitation conditions from ENSO phases, are also studied. The Australian and Indonesian precipitation and that of the eastern part of Africa in both JJAS and DJF seem to be well predictable based on the ENSO phase, while the southern Indian precipitation relates to the half-year previous ENSO phase only in DJF. The strength of these connections increases, especially from the African region to the Arabian Peninsula.
doi_str_mv 10.5194/esd-11-267-2020
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ba4394e3174a463184a762c6a83b70ca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617252214</galeid><doaj_id>oai_doaj_org_article_ba4394e3174a463184a762c6a83b70ca</doaj_id><sourcerecordid>A617252214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-36ce001a7cf336a427f3d0091bd7b02ef55b830d1d5a3d5b293d0bebd5dc9c813</originalsourceid><addsrcrecordid>eNptksFu1DAQhiMEElXpmaslThzSemwnTo5VVWClikoUztbEngSvss5iexe48Q68IU-Cl0XAStgHj-xvfo1__VX1HPhlA726ouRqgFq0uhZc8EfVmYCe16rv9ON_6qfVRUprXlbTClDNWeVXYU8p-wmzDxO7fftwzzA45nNimWaySwhks19CYrvgKDI7-w1mYvYjhomYD4VnFBJthpnY3tNn9uPbd4YslGpLMW0P_Xt6Vj0ZcU508fs8rz68un1_86a-u3-9urm-q63SOteytcQ5oLajlC0qoUfpOO9hcHrggsamGTrJHbgGpWsG0ZfngQbXONvbDuR5tTrqugXXZhvLtPGrWdCbXxdLnAzG7O1MZkAle0UStELVSugU6lbYFjs5aG6xaL04am3j8mlXfDLrZRdDGd8IBaq4CAL-UhMWUR_GJUe0G5-suW5Bi0YUrwt1-R-qbEcbX2ym0Zf7k4aXJw2FyfQlT7hLyawe3p2yV0fWxiWlSOOfjwM3h4SYkhADYEpCzCEh8ieCL6yL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414056121</pqid></control><display><type>article</type><title>Investigating ENSO and its teleconnections under climate change in an ensemble view – a new perspective</title><source>ProQuest - Publicly Available Content Database</source><creator>Haszpra, Tímea ; Herein, Mátyás ; Bódai, Tamás</creator><creatorcontrib>Haszpra, Tímea ; Herein, Mátyás ; Bódai, Tamás</creatorcontrib><description>The changes in the El Niño–Southern Oscillation (ENSO) phenomenon and its precipitation-related teleconnections over the globe under climate change are investigated in the Community Earth System Model Large Ensemble from 1950 to 2100. For the investigation, a recently developed ensemble-based method, the snapshot empirical orthogonal function (SEOF) analysis, is used. The instantaneous ENSO pattern is defined as the leading mode of the SEOF analysis carried out at a given time instant over the ensemble. The corresponding principal components (PC1s) characterize the ENSO phases. By considering sea surface temperature (SST) regression maps, we find that the largest changes in the typical amplitude of SST fluctuations occur in the June–July–August–September (JJAS) season, in the Niño3–Niño3.4 (5∘ N–5∘ S, 170–90∘ W; NOAA Climate Prediction Center) region, and the western part of the Pacific Ocean; however, the increase is also considerable along the Equator in December–January–February (DJF). The Niño3 amplitude also shows an increase of about 20 % and 10 % in JJAS and DJF, respectively. The strength of the precipitation-related teleconnections of the ENSO is found to be nonstationary, as well. For example, the anticorrelation with precipitation in Australia in JJAS and the positive correlation in central and northern Africa in DJF are predicted to be more pronounced by the end of the 21th century. Half-year-lagged correlations, aiming to predict precipitation conditions from ENSO phases, are also studied. The Australian and Indonesian precipitation and that of the eastern part of Africa in both JJAS and DJF seem to be well predictable based on the ENSO phase, while the southern Indian precipitation relates to the half-year previous ENSO phase only in DJF. The strength of these connections increases, especially from the African region to the Arabian Peninsula.</description><identifier>ISSN: 2190-4987</identifier><identifier>ISSN: 2190-4979</identifier><identifier>EISSN: 2190-4987</identifier><identifier>DOI: 10.5194/esd-11-267-2020</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Amplitude ; Amplitudes ; Analysis ; Climate change ; Climate prediction ; Correlation ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Empirical analysis ; Equator ; General circulation models ; Global temperature changes ; Investigations ; Orthogonal functions ; Precipitation ; Precipitation (Meteorology) ; Regression analysis ; Sea surface ; Sea surface temperature ; Simulation ; Southern Oscillation ; Statistics ; Studies ; Surface temperature ; Teleconnections ; Time series</subject><ispartof>Earth system dynamics, 2020-03, Vol.11 (1), p.267-280</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-36ce001a7cf336a427f3d0091bd7b02ef55b830d1d5a3d5b293d0bebd5dc9c813</citedby><cites>FETCH-LOGICAL-c477t-36ce001a7cf336a427f3d0091bd7b02ef55b830d1d5a3d5b293d0bebd5dc9c813</cites><orcidid>0000-0003-1903-3761 ; 0000-0002-3049-107X ; 0000-0001-6716-071X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414056121/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414056121?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Haszpra, Tímea</creatorcontrib><creatorcontrib>Herein, Mátyás</creatorcontrib><creatorcontrib>Bódai, Tamás</creatorcontrib><title>Investigating ENSO and its teleconnections under climate change in an ensemble view – a new perspective</title><title>Earth system dynamics</title><description>The changes in the El Niño–Southern Oscillation (ENSO) phenomenon and its precipitation-related teleconnections over the globe under climate change are investigated in the Community Earth System Model Large Ensemble from 1950 to 2100. For the investigation, a recently developed ensemble-based method, the snapshot empirical orthogonal function (SEOF) analysis, is used. The instantaneous ENSO pattern is defined as the leading mode of the SEOF analysis carried out at a given time instant over the ensemble. The corresponding principal components (PC1s) characterize the ENSO phases. By considering sea surface temperature (SST) regression maps, we find that the largest changes in the typical amplitude of SST fluctuations occur in the June–July–August–September (JJAS) season, in the Niño3–Niño3.4 (5∘ N–5∘ S, 170–90∘ W; NOAA Climate Prediction Center) region, and the western part of the Pacific Ocean; however, the increase is also considerable along the Equator in December–January–February (DJF). The Niño3 amplitude also shows an increase of about 20 % and 10 % in JJAS and DJF, respectively. The strength of the precipitation-related teleconnections of the ENSO is found to be nonstationary, as well. For example, the anticorrelation with precipitation in Australia in JJAS and the positive correlation in central and northern Africa in DJF are predicted to be more pronounced by the end of the 21th century. Half-year-lagged correlations, aiming to predict precipitation conditions from ENSO phases, are also studied. The Australian and Indonesian precipitation and that of the eastern part of Africa in both JJAS and DJF seem to be well predictable based on the ENSO phase, while the southern Indian precipitation relates to the half-year previous ENSO phase only in DJF. The strength of these connections increases, especially from the African region to the Arabian Peninsula.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Analysis</subject><subject>Climate change</subject><subject>Climate prediction</subject><subject>Correlation</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Empirical analysis</subject><subject>Equator</subject><subject>General circulation models</subject><subject>Global temperature changes</subject><subject>Investigations</subject><subject>Orthogonal functions</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Regression analysis</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Simulation</subject><subject>Southern Oscillation</subject><subject>Statistics</subject><subject>Studies</subject><subject>Surface temperature</subject><subject>Teleconnections</subject><subject>Time series</subject><issn>2190-4987</issn><issn>2190-4979</issn><issn>2190-4987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksFu1DAQhiMEElXpmaslThzSemwnTo5VVWClikoUztbEngSvss5iexe48Q68IU-Cl0XAStgHj-xvfo1__VX1HPhlA726ouRqgFq0uhZc8EfVmYCe16rv9ON_6qfVRUprXlbTClDNWeVXYU8p-wmzDxO7fftwzzA45nNimWaySwhks19CYrvgKDI7-w1mYvYjhomYD4VnFBJthpnY3tNn9uPbd4YslGpLMW0P_Xt6Vj0ZcU508fs8rz68un1_86a-u3-9urm-q63SOteytcQ5oLajlC0qoUfpOO9hcHrggsamGTrJHbgGpWsG0ZfngQbXONvbDuR5tTrqugXXZhvLtPGrWdCbXxdLnAzG7O1MZkAle0UStELVSugU6lbYFjs5aG6xaL04am3j8mlXfDLrZRdDGd8IBaq4CAL-UhMWUR_GJUe0G5-suW5Bi0YUrwt1-R-qbEcbX2ym0Zf7k4aXJw2FyfQlT7hLyawe3p2yV0fWxiWlSOOfjwM3h4SYkhADYEpCzCEh8ieCL6yL</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Haszpra, Tímea</creator><creator>Herein, Mátyás</creator><creator>Bódai, Tamás</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1903-3761</orcidid><orcidid>https://orcid.org/0000-0002-3049-107X</orcidid><orcidid>https://orcid.org/0000-0001-6716-071X</orcidid></search><sort><creationdate>20200312</creationdate><title>Investigating ENSO and its teleconnections under climate change in an ensemble view – a new perspective</title><author>Haszpra, Tímea ; Herein, Mátyás ; Bódai, Tamás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-36ce001a7cf336a427f3d0091bd7b02ef55b830d1d5a3d5b293d0bebd5dc9c813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Analysis</topic><topic>Climate change</topic><topic>Climate prediction</topic><topic>Correlation</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Empirical analysis</topic><topic>Equator</topic><topic>General circulation models</topic><topic>Global temperature changes</topic><topic>Investigations</topic><topic>Orthogonal functions</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Regression analysis</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Simulation</topic><topic>Southern Oscillation</topic><topic>Statistics</topic><topic>Studies</topic><topic>Surface temperature</topic><topic>Teleconnections</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haszpra, Tímea</creatorcontrib><creatorcontrib>Herein, Mátyás</creatorcontrib><creatorcontrib>Bódai, Tamás</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Earth system dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haszpra, Tímea</au><au>Herein, Mátyás</au><au>Bódai, Tamás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating ENSO and its teleconnections under climate change in an ensemble view – a new perspective</atitle><jtitle>Earth system dynamics</jtitle><date>2020-03-12</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>267</spage><epage>280</epage><pages>267-280</pages><issn>2190-4987</issn><issn>2190-4979</issn><eissn>2190-4987</eissn><abstract>The changes in the El Niño–Southern Oscillation (ENSO) phenomenon and its precipitation-related teleconnections over the globe under climate change are investigated in the Community Earth System Model Large Ensemble from 1950 to 2100. For the investigation, a recently developed ensemble-based method, the snapshot empirical orthogonal function (SEOF) analysis, is used. The instantaneous ENSO pattern is defined as the leading mode of the SEOF analysis carried out at a given time instant over the ensemble. The corresponding principal components (PC1s) characterize the ENSO phases. By considering sea surface temperature (SST) regression maps, we find that the largest changes in the typical amplitude of SST fluctuations occur in the June–July–August–September (JJAS) season, in the Niño3–Niño3.4 (5∘ N–5∘ S, 170–90∘ W; NOAA Climate Prediction Center) region, and the western part of the Pacific Ocean; however, the increase is also considerable along the Equator in December–January–February (DJF). The Niño3 amplitude also shows an increase of about 20 % and 10 % in JJAS and DJF, respectively. The strength of the precipitation-related teleconnections of the ENSO is found to be nonstationary, as well. For example, the anticorrelation with precipitation in Australia in JJAS and the positive correlation in central and northern Africa in DJF are predicted to be more pronounced by the end of the 21th century. Half-year-lagged correlations, aiming to predict precipitation conditions from ENSO phases, are also studied. The Australian and Indonesian precipitation and that of the eastern part of Africa in both JJAS and DJF seem to be well predictable based on the ENSO phase, while the southern Indian precipitation relates to the half-year previous ENSO phase only in DJF. The strength of these connections increases, especially from the African region to the Arabian Peninsula.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/esd-11-267-2020</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1903-3761</orcidid><orcidid>https://orcid.org/0000-0002-3049-107X</orcidid><orcidid>https://orcid.org/0000-0001-6716-071X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-4987
ispartof Earth system dynamics, 2020-03, Vol.11 (1), p.267-280
issn 2190-4987
2190-4979
2190-4987
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ba4394e3174a463184a762c6a83b70ca
source ProQuest - Publicly Available Content Database
subjects Amplitude
Amplitudes
Analysis
Climate change
Climate prediction
Correlation
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Empirical analysis
Equator
General circulation models
Global temperature changes
Investigations
Orthogonal functions
Precipitation
Precipitation (Meteorology)
Regression analysis
Sea surface
Sea surface temperature
Simulation
Southern Oscillation
Statistics
Studies
Surface temperature
Teleconnections
Time series
title Investigating ENSO and its teleconnections under climate change in an ensemble view – a new perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20ENSO%20and%20its%20teleconnections%20under%20climate%20change%20in%20an%20ensemble%20view%20%E2%80%93%20a%20new%20perspective&rft.jtitle=Earth%20system%20dynamics&rft.au=Haszpra,%20T%C3%ADmea&rft.date=2020-03-12&rft.volume=11&rft.issue=1&rft.spage=267&rft.epage=280&rft.pages=267-280&rft.issn=2190-4987&rft.eissn=2190-4987&rft_id=info:doi/10.5194/esd-11-267-2020&rft_dat=%3Cgale_doaj_%3EA617252214%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-36ce001a7cf336a427f3d0091bd7b02ef55b830d1d5a3d5b293d0bebd5dc9c813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414056121&rft_id=info:pmid/&rft_galeid=A617252214&rfr_iscdi=true