Loading…

Assessing the Feasibility of Using Kinect 3D Images to Predict Light Lamb Carcasses Composition from Leg Volume

This study aimed to evaluate the accuracy of the leg volume obtained by the Microsoft Kinect sensor to predict the composition of light lamb carcasses. The trial was performed on carcasses of twenty-two male lambs (17.6 ± 1.8 kg, body weight). The carcasses were split into eight cuts, divided into t...

Full description

Saved in:
Bibliographic Details
Published in:Animals (Basel) 2021-12, Vol.11 (12), p.3595
Main Authors: Silva, Severiano R, Almeida, Mariana, Condotta, Isabella, Arantes, André, Guedes, Cristina, Santos, Virgínia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-ceca0a433e8247089ce716dd3065956c430569289a634d49d9ef68fc14efcd263
cites cdi_FETCH-LOGICAL-c475t-ceca0a433e8247089ce716dd3065956c430569289a634d49d9ef68fc14efcd263
container_end_page
container_issue 12
container_start_page 3595
container_title Animals (Basel)
container_volume 11
creator Silva, Severiano R
Almeida, Mariana
Condotta, Isabella
Arantes, André
Guedes, Cristina
Santos, Virgínia
description This study aimed to evaluate the accuracy of the leg volume obtained by the Microsoft Kinect sensor to predict the composition of light lamb carcasses. The trial was performed on carcasses of twenty-two male lambs (17.6 ± 1.8 kg, body weight). The carcasses were split into eight cuts, divided into three groups according to their commercial value: high-value, medium value, and low-value group. Linear, area, and volume of leg measurements were obtained to predict carcass and cuts composition. The leg volume was acquired by two different methodologies: 3D image reconstruction using a Microsoft Kinect sensor and Archimedes principle. The correlation between these two leg measurements was significant (r = 0.815, < 0.01). The models to predict cuts and carcass traits that include leg Kinect 3D sensor volume are very good in predicting the weight of the medium value and leg cuts (R of 0.763 and 0.829, respectively). Furthermore, the model, which includes the Kinect leg volume, explained 85% of its variation for the carcass muscle. The results of this study confirm the good ability to estimate cuts and carcass traits of light lamb carcasses with leg volume obtained with the Kinect 3D sensor.
doi_str_mv 10.3390/ani11123595
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ba55d58c85034e79a3bc54f8ab1d3cee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ba55d58c85034e79a3bc54f8ab1d3cee</doaj_id><sourcerecordid>2612726052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ceca0a433e8247089ce716dd3065956c430569289a634d49d9ef68fc14efcd263</originalsourceid><addsrcrecordid>eNpdks9rFDEUgAdRbKk9eZeAF0FW83smF6GsVhcX9GC9hjfJm9ksM5M1mS30vzfbrWVrDsnjvY-Pl-RV1WtGPwhh6EeYAmOMC2XUs-qc01ovuGbq-Ul8Vl3mvKVl1UowxV5WZ0IaKUVNz6t4lTPmHKaezBsk1wg5tGEI8x2JHbm5L3wPE7qZiM9kNUKPmcyR_EzoQ0muQ78pO4wtWUJycLCRZRx3MYc5xIl0KY5kjT35HYf9iK-qFx0MGS8fzovq5vrLr-W3xfrH19Xyar1wslbzwqEDClIIbLisaWMc1kx7L6guN9VOCqq04Y0BLaSXxhvsdNM5JrFznmtxUa2OXh9ha3cpjJDubIRg7xMx9RbSHNyAtgWlvGpco6iQWBsQrVOya6BlXjjE4vp0dO327Yje4TQnGJ5In1amsLF9vLWNNg2lsgjePQhS_LPHPNsxZIfDABPGfbbllySXvOamoG__Q7dxn6byVAeqIJoqXqj3R8qlmHPC7rEZRu1hLuzJXBT6zWn_j-y_KRB_AcXjstM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612726052</pqid></control><display><type>article</type><title>Assessing the Feasibility of Using Kinect 3D Images to Predict Light Lamb Carcasses Composition from Leg Volume</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Silva, Severiano R ; Almeida, Mariana ; Condotta, Isabella ; Arantes, André ; Guedes, Cristina ; Santos, Virgínia</creator><creatorcontrib>Silva, Severiano R ; Almeida, Mariana ; Condotta, Isabella ; Arantes, André ; Guedes, Cristina ; Santos, Virgínia</creatorcontrib><description>This study aimed to evaluate the accuracy of the leg volume obtained by the Microsoft Kinect sensor to predict the composition of light lamb carcasses. The trial was performed on carcasses of twenty-two male lambs (17.6 ± 1.8 kg, body weight). The carcasses were split into eight cuts, divided into three groups according to their commercial value: high-value, medium value, and low-value group. Linear, area, and volume of leg measurements were obtained to predict carcass and cuts composition. The leg volume was acquired by two different methodologies: 3D image reconstruction using a Microsoft Kinect sensor and Archimedes principle. The correlation between these two leg measurements was significant (r = 0.815, &lt; 0.01). The models to predict cuts and carcass traits that include leg Kinect 3D sensor volume are very good in predicting the weight of the medium value and leg cuts (R of 0.763 and 0.829, respectively). Furthermore, the model, which includes the Kinect leg volume, explained 85% of its variation for the carcass muscle. The results of this study confirm the good ability to estimate cuts and carcass traits of light lamb carcasses with leg volume obtained with the Kinect 3D sensor.</description><identifier>ISSN: 2076-2615</identifier><identifier>EISSN: 2076-2615</identifier><identifier>DOI: 10.3390/ani11123595</identifier><identifier>PMID: 34944370</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3D image ; Animal welfare ; Body weight ; carcass composition ; Carcasses ; Composition ; Correlation analysis ; Digital cameras ; Evaluation ; Image acquisition ; Image processing ; lambs ; Leg ; leg volume ; Light ; Microsoft Kinect ; Muscles ; Sensors ; Software ; Standard deviation ; Statistical analysis ; Three dimensional imaging</subject><ispartof>Animals (Basel), 2021-12, Vol.11 (12), p.3595</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-ceca0a433e8247089ce716dd3065956c430569289a634d49d9ef68fc14efcd263</citedby><cites>FETCH-LOGICAL-c475t-ceca0a433e8247089ce716dd3065956c430569289a634d49d9ef68fc14efcd263</cites><orcidid>0000-0003-3581-5595 ; 0000-0003-0482-5459 ; 0000-0002-8390-4907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612726052/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612726052?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34944370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Severiano R</creatorcontrib><creatorcontrib>Almeida, Mariana</creatorcontrib><creatorcontrib>Condotta, Isabella</creatorcontrib><creatorcontrib>Arantes, André</creatorcontrib><creatorcontrib>Guedes, Cristina</creatorcontrib><creatorcontrib>Santos, Virgínia</creatorcontrib><title>Assessing the Feasibility of Using Kinect 3D Images to Predict Light Lamb Carcasses Composition from Leg Volume</title><title>Animals (Basel)</title><addtitle>Animals (Basel)</addtitle><description>This study aimed to evaluate the accuracy of the leg volume obtained by the Microsoft Kinect sensor to predict the composition of light lamb carcasses. The trial was performed on carcasses of twenty-two male lambs (17.6 ± 1.8 kg, body weight). The carcasses were split into eight cuts, divided into three groups according to their commercial value: high-value, medium value, and low-value group. Linear, area, and volume of leg measurements were obtained to predict carcass and cuts composition. The leg volume was acquired by two different methodologies: 3D image reconstruction using a Microsoft Kinect sensor and Archimedes principle. The correlation between these two leg measurements was significant (r = 0.815, &lt; 0.01). The models to predict cuts and carcass traits that include leg Kinect 3D sensor volume are very good in predicting the weight of the medium value and leg cuts (R of 0.763 and 0.829, respectively). Furthermore, the model, which includes the Kinect leg volume, explained 85% of its variation for the carcass muscle. The results of this study confirm the good ability to estimate cuts and carcass traits of light lamb carcasses with leg volume obtained with the Kinect 3D sensor.</description><subject>3D image</subject><subject>Animal welfare</subject><subject>Body weight</subject><subject>carcass composition</subject><subject>Carcasses</subject><subject>Composition</subject><subject>Correlation analysis</subject><subject>Digital cameras</subject><subject>Evaluation</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>lambs</subject><subject>Leg</subject><subject>leg volume</subject><subject>Light</subject><subject>Microsoft Kinect</subject><subject>Muscles</subject><subject>Sensors</subject><subject>Software</subject><subject>Standard deviation</subject><subject>Statistical analysis</subject><subject>Three dimensional imaging</subject><issn>2076-2615</issn><issn>2076-2615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9rFDEUgAdRbKk9eZeAF0FW83smF6GsVhcX9GC9hjfJm9ksM5M1mS30vzfbrWVrDsnjvY-Pl-RV1WtGPwhh6EeYAmOMC2XUs-qc01ovuGbq-Ul8Vl3mvKVl1UowxV5WZ0IaKUVNz6t4lTPmHKaezBsk1wg5tGEI8x2JHbm5L3wPE7qZiM9kNUKPmcyR_EzoQ0muQ78pO4wtWUJycLCRZRx3MYc5xIl0KY5kjT35HYf9iK-qFx0MGS8fzovq5vrLr-W3xfrH19Xyar1wslbzwqEDClIIbLisaWMc1kx7L6guN9VOCqq04Y0BLaSXxhvsdNM5JrFznmtxUa2OXh9ha3cpjJDubIRg7xMx9RbSHNyAtgWlvGpco6iQWBsQrVOya6BlXjjE4vp0dO327Yje4TQnGJ5In1amsLF9vLWNNg2lsgjePQhS_LPHPNsxZIfDABPGfbbllySXvOamoG__Q7dxn6byVAeqIJoqXqj3R8qlmHPC7rEZRu1hLuzJXBT6zWn_j-y_KRB_AcXjstM</recordid><startdate>20211219</startdate><enddate>20211219</enddate><creator>Silva, Severiano R</creator><creator>Almeida, Mariana</creator><creator>Condotta, Isabella</creator><creator>Arantes, André</creator><creator>Guedes, Cristina</creator><creator>Santos, Virgínia</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3581-5595</orcidid><orcidid>https://orcid.org/0000-0003-0482-5459</orcidid><orcidid>https://orcid.org/0000-0002-8390-4907</orcidid></search><sort><creationdate>20211219</creationdate><title>Assessing the Feasibility of Using Kinect 3D Images to Predict Light Lamb Carcasses Composition from Leg Volume</title><author>Silva, Severiano R ; Almeida, Mariana ; Condotta, Isabella ; Arantes, André ; Guedes, Cristina ; Santos, Virgínia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ceca0a433e8247089ce716dd3065956c430569289a634d49d9ef68fc14efcd263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D image</topic><topic>Animal welfare</topic><topic>Body weight</topic><topic>carcass composition</topic><topic>Carcasses</topic><topic>Composition</topic><topic>Correlation analysis</topic><topic>Digital cameras</topic><topic>Evaluation</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>lambs</topic><topic>Leg</topic><topic>leg volume</topic><topic>Light</topic><topic>Microsoft Kinect</topic><topic>Muscles</topic><topic>Sensors</topic><topic>Software</topic><topic>Standard deviation</topic><topic>Statistical analysis</topic><topic>Three dimensional imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Severiano R</creatorcontrib><creatorcontrib>Almeida, Mariana</creatorcontrib><creatorcontrib>Condotta, Isabella</creatorcontrib><creatorcontrib>Arantes, André</creatorcontrib><creatorcontrib>Guedes, Cristina</creatorcontrib><creatorcontrib>Santos, Virgínia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Animals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Severiano R</au><au>Almeida, Mariana</au><au>Condotta, Isabella</au><au>Arantes, André</au><au>Guedes, Cristina</au><au>Santos, Virgínia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the Feasibility of Using Kinect 3D Images to Predict Light Lamb Carcasses Composition from Leg Volume</atitle><jtitle>Animals (Basel)</jtitle><addtitle>Animals (Basel)</addtitle><date>2021-12-19</date><risdate>2021</risdate><volume>11</volume><issue>12</issue><spage>3595</spage><pages>3595-</pages><issn>2076-2615</issn><eissn>2076-2615</eissn><abstract>This study aimed to evaluate the accuracy of the leg volume obtained by the Microsoft Kinect sensor to predict the composition of light lamb carcasses. The trial was performed on carcasses of twenty-two male lambs (17.6 ± 1.8 kg, body weight). The carcasses were split into eight cuts, divided into three groups according to their commercial value: high-value, medium value, and low-value group. Linear, area, and volume of leg measurements were obtained to predict carcass and cuts composition. The leg volume was acquired by two different methodologies: 3D image reconstruction using a Microsoft Kinect sensor and Archimedes principle. The correlation between these two leg measurements was significant (r = 0.815, &lt; 0.01). The models to predict cuts and carcass traits that include leg Kinect 3D sensor volume are very good in predicting the weight of the medium value and leg cuts (R of 0.763 and 0.829, respectively). Furthermore, the model, which includes the Kinect leg volume, explained 85% of its variation for the carcass muscle. The results of this study confirm the good ability to estimate cuts and carcass traits of light lamb carcasses with leg volume obtained with the Kinect 3D sensor.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34944370</pmid><doi>10.3390/ani11123595</doi><orcidid>https://orcid.org/0000-0003-3581-5595</orcidid><orcidid>https://orcid.org/0000-0003-0482-5459</orcidid><orcidid>https://orcid.org/0000-0002-8390-4907</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-2615
ispartof Animals (Basel), 2021-12, Vol.11 (12), p.3595
issn 2076-2615
2076-2615
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ba55d58c85034e79a3bc54f8ab1d3cee
source Publicly Available Content Database; PubMed Central
subjects 3D image
Animal welfare
Body weight
carcass composition
Carcasses
Composition
Correlation analysis
Digital cameras
Evaluation
Image acquisition
Image processing
lambs
Leg
leg volume
Light
Microsoft Kinect
Muscles
Sensors
Software
Standard deviation
Statistical analysis
Three dimensional imaging
title Assessing the Feasibility of Using Kinect 3D Images to Predict Light Lamb Carcasses Composition from Leg Volume
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20Feasibility%20of%20Using%20Kinect%203D%20Images%20to%20Predict%20Light%20Lamb%20Carcasses%20Composition%20from%20Leg%20Volume&rft.jtitle=Animals%20(Basel)&rft.au=Silva,%20Severiano%20R&rft.date=2021-12-19&rft.volume=11&rft.issue=12&rft.spage=3595&rft.pages=3595-&rft.issn=2076-2615&rft.eissn=2076-2615&rft_id=info:doi/10.3390/ani11123595&rft_dat=%3Cproquest_doaj_%3E2612726052%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-ceca0a433e8247089ce716dd3065956c430569289a634d49d9ef68fc14efcd263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612726052&rft_id=info:pmid/34944370&rfr_iscdi=true