Loading…

Quantum advantage in postselected metrology

In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-07, Vol.11 (1), p.3775-3775, Article 3775
Main Authors: Arvidsson-Shukur, David R. M., Yunger Halpern, Nicole, Lepage, Hugo V., Lasek, Aleksander A., Barnes, Crispin H. W., Lloyd, Seth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-4739eb07edbdc3c29aae23635cd1b400679a9cd2a8701aceec461c1a811316233
cites cdi_FETCH-LOGICAL-c606t-4739eb07edbdc3c29aae23635cd1b400679a9cd2a8701aceec461c1a811316233
container_end_page 3775
container_issue 1
container_start_page 3775
container_title Nature communications
container_volume 11
creator Arvidsson-Shukur, David R. M.
Yunger Halpern, Nicole
Lepage, Hugo V.
Lasek, Aleksander A.
Barnes, Crispin H. W.
Lloyd, Seth
description In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of a particular quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution is real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. Negative quasiprobabilities enable postselected experiments to outperform optimal postselection-free experiments: postselected quantum experiments can yield anomalously large information-cost rates. This advantage, we prove, is unrealizable in any classically commuting theory. Finally, we construct a preparation-and-postselection procedure that yields an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool. In quantum metrology (as well as computing) it is not easy to pinpoint the specific source of quantum advantage. Here, the authors reveal a link between postselection and the unusually high rates of information per final measurement in general quantum parameter-estimation scenarios.
doi_str_mv 10.1038/s41467-020-17559-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ba5f29d271834adeb475aeace53c602b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ba5f29d271834adeb475aeace53c602b</doaj_id><sourcerecordid>2428281549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-4739eb07edbdc3c29aae23635cd1b400679a9cd2a8701aceec461c1a811316233</originalsourceid><addsrcrecordid>eNp9kV1rFTEQhoMottT-AS_kgDeCrGaS7Ca5EaSoLRRE0Oswm8xZ97C7OSa7Lf33Tbu1H16Ym0wy7zyZycvYa-AfgEvzMStQja644BXourbV5TN2KLiCchTy-aP4gB3nvONlSQtGqZfsQAotDDfikL3_seA0L-MGw0UJsKNNP232Mc-ZBvIzhc1Ic4pD7K5esRdbHDId3-1H7NfXLz9PTqvz79_OTj6fV77hzVwpLS21XFNog5deWEQSspG1D9Aqzhtt0fog0GgO6Im8asADGgAJjZDyiJ2t3BBx5_apHzFduYi9u72IqXOY5t4P5Fqst8IGocFIhYFapWukAq1laUa0hfVpZe2XdqTgaZoTDk-gTzNT_9t18cKVIUCDKoB3d4AU_yyUZzf22dMw4ERxyU4oYXltQPMiffuPdBeXNJWvulEZYaBWtqjEqvIp5pxoe98McHdjrVutdcVad2utuyxFbx6PcV_y18gikKsgl9TUUXp4-z_Ya1_Jrv8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428281549</pqid></control><display><type>article</type><title>Quantum advantage in postselected metrology</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Arvidsson-Shukur, David R. M. ; Yunger Halpern, Nicole ; Lepage, Hugo V. ; Lasek, Aleksander A. ; Barnes, Crispin H. W. ; Lloyd, Seth</creator><creatorcontrib>Arvidsson-Shukur, David R. M. ; Yunger Halpern, Nicole ; Lepage, Hugo V. ; Lasek, Aleksander A. ; Barnes, Crispin H. W. ; Lloyd, Seth</creatorcontrib><description>In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of a particular quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution is real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. Negative quasiprobabilities enable postselected experiments to outperform optimal postselection-free experiments: postselected quantum experiments can yield anomalously large information-cost rates. This advantage, we prove, is unrealizable in any classically commuting theory. Finally, we construct a preparation-and-postselection procedure that yields an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool. In quantum metrology (as well as computing) it is not easy to pinpoint the specific source of quantum advantage. Here, the authors reveal a link between postselection and the unusually high rates of information per final measurement in general quantum parameter-estimation scenarios.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-17559-w</identifier><identifier>PMID: 32728082</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/1139 ; 639/766/483/1255 ; 639/766/483/481 ; Commuting ; Experiments ; Fisher information ; Humanities and Social Sciences ; Mathematical analysis ; Metrology ; multidisciplinary ; Parameter estimation ; Probability distribution ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2020-07, Vol.11 (1), p.3775-3775, Article 3775</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-4739eb07edbdc3c29aae23635cd1b400679a9cd2a8701aceec461c1a811316233</citedby><cites>FETCH-LOGICAL-c606t-4739eb07edbdc3c29aae23635cd1b400679a9cd2a8701aceec461c1a811316233</cites><orcidid>0000-0001-8670-6212 ; 0000-0001-8077-8178 ; 0000-0002-0185-0352 ; 0000-0002-7363-4165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2428281549/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2428281549?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32728082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arvidsson-Shukur, David R. M.</creatorcontrib><creatorcontrib>Yunger Halpern, Nicole</creatorcontrib><creatorcontrib>Lepage, Hugo V.</creatorcontrib><creatorcontrib>Lasek, Aleksander A.</creatorcontrib><creatorcontrib>Barnes, Crispin H. W.</creatorcontrib><creatorcontrib>Lloyd, Seth</creatorcontrib><title>Quantum advantage in postselected metrology</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of a particular quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution is real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. Negative quasiprobabilities enable postselected experiments to outperform optimal postselection-free experiments: postselected quantum experiments can yield anomalously large information-cost rates. This advantage, we prove, is unrealizable in any classically commuting theory. Finally, we construct a preparation-and-postselection procedure that yields an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool. In quantum metrology (as well as computing) it is not easy to pinpoint the specific source of quantum advantage. Here, the authors reveal a link between postselection and the unusually high rates of information per final measurement in general quantum parameter-estimation scenarios.</description><subject>639/766/483/1139</subject><subject>639/766/483/1255</subject><subject>639/766/483/481</subject><subject>Commuting</subject><subject>Experiments</subject><subject>Fisher information</subject><subject>Humanities and Social Sciences</subject><subject>Mathematical analysis</subject><subject>Metrology</subject><subject>multidisciplinary</subject><subject>Parameter estimation</subject><subject>Probability distribution</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV1rFTEQhoMottT-AS_kgDeCrGaS7Ca5EaSoLRRE0Oswm8xZ97C7OSa7Lf33Tbu1H16Ym0wy7zyZycvYa-AfgEvzMStQja644BXourbV5TN2KLiCchTy-aP4gB3nvONlSQtGqZfsQAotDDfikL3_seA0L-MGw0UJsKNNP232Mc-ZBvIzhc1Ic4pD7K5esRdbHDId3-1H7NfXLz9PTqvz79_OTj6fV77hzVwpLS21XFNog5deWEQSspG1D9Aqzhtt0fog0GgO6Im8asADGgAJjZDyiJ2t3BBx5_apHzFduYi9u72IqXOY5t4P5Fqst8IGocFIhYFapWukAq1laUa0hfVpZe2XdqTgaZoTDk-gTzNT_9t18cKVIUCDKoB3d4AU_yyUZzf22dMw4ERxyU4oYXltQPMiffuPdBeXNJWvulEZYaBWtqjEqvIp5pxoe98McHdjrVutdcVad2utuyxFbx6PcV_y18gikKsgl9TUUXp4-z_Ya1_Jrv8</recordid><startdate>20200729</startdate><enddate>20200729</enddate><creator>Arvidsson-Shukur, David R. M.</creator><creator>Yunger Halpern, Nicole</creator><creator>Lepage, Hugo V.</creator><creator>Lasek, Aleksander A.</creator><creator>Barnes, Crispin H. W.</creator><creator>Lloyd, Seth</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8670-6212</orcidid><orcidid>https://orcid.org/0000-0001-8077-8178</orcidid><orcidid>https://orcid.org/0000-0002-0185-0352</orcidid><orcidid>https://orcid.org/0000-0002-7363-4165</orcidid></search><sort><creationdate>20200729</creationdate><title>Quantum advantage in postselected metrology</title><author>Arvidsson-Shukur, David R. M. ; Yunger Halpern, Nicole ; Lepage, Hugo V. ; Lasek, Aleksander A. ; Barnes, Crispin H. W. ; Lloyd, Seth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-4739eb07edbdc3c29aae23635cd1b400679a9cd2a8701aceec461c1a811316233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/483/1139</topic><topic>639/766/483/1255</topic><topic>639/766/483/481</topic><topic>Commuting</topic><topic>Experiments</topic><topic>Fisher information</topic><topic>Humanities and Social Sciences</topic><topic>Mathematical analysis</topic><topic>Metrology</topic><topic>multidisciplinary</topic><topic>Parameter estimation</topic><topic>Probability distribution</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arvidsson-Shukur, David R. M.</creatorcontrib><creatorcontrib>Yunger Halpern, Nicole</creatorcontrib><creatorcontrib>Lepage, Hugo V.</creatorcontrib><creatorcontrib>Lasek, Aleksander A.</creatorcontrib><creatorcontrib>Barnes, Crispin H. W.</creatorcontrib><creatorcontrib>Lloyd, Seth</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arvidsson-Shukur, David R. M.</au><au>Yunger Halpern, Nicole</au><au>Lepage, Hugo V.</au><au>Lasek, Aleksander A.</au><au>Barnes, Crispin H. W.</au><au>Lloyd, Seth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum advantage in postselected metrology</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-07-29</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>3775</spage><epage>3775</epage><pages>3775-3775</pages><artnum>3775</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of a particular quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution is real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. Negative quasiprobabilities enable postselected experiments to outperform optimal postselection-free experiments: postselected quantum experiments can yield anomalously large information-cost rates. This advantage, we prove, is unrealizable in any classically commuting theory. Finally, we construct a preparation-and-postselection procedure that yields an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool. In quantum metrology (as well as computing) it is not easy to pinpoint the specific source of quantum advantage. Here, the authors reveal a link between postselection and the unusually high rates of information per final measurement in general quantum parameter-estimation scenarios.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32728082</pmid><doi>10.1038/s41467-020-17559-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8670-6212</orcidid><orcidid>https://orcid.org/0000-0001-8077-8178</orcidid><orcidid>https://orcid.org/0000-0002-0185-0352</orcidid><orcidid>https://orcid.org/0000-0002-7363-4165</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-07, Vol.11 (1), p.3775-3775, Article 3775
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ba5f29d271834adeb475aeace53c602b
source Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766/483/1139
639/766/483/1255
639/766/483/481
Commuting
Experiments
Fisher information
Humanities and Social Sciences
Mathematical analysis
Metrology
multidisciplinary
Parameter estimation
Probability distribution
Science
Science (multidisciplinary)
title Quantum advantage in postselected metrology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20advantage%20in%20postselected%20metrology&rft.jtitle=Nature%20communications&rft.au=Arvidsson-Shukur,%20David%20R.%20M.&rft.date=2020-07-29&rft.volume=11&rft.issue=1&rft.spage=3775&rft.epage=3775&rft.pages=3775-3775&rft.artnum=3775&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-17559-w&rft_dat=%3Cproquest_doaj_%3E2428281549%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-4739eb07edbdc3c29aae23635cd1b400679a9cd2a8701aceec461c1a811316233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428281549&rft_id=info:pmid/32728082&rfr_iscdi=true