Loading…

An open-source membrane stretcher for simultaneous mechanical and structural characterizations of soft materials and biological tissues

The ability to simultaneously measure material mechanics and structure is central for understanding their nonlinear relationship that underlies the mechanical properties of materials, such as hysteresis, strain-stiffening and -softening, and plasticity. This experimental capability is also critical...

Full description

Saved in:
Bibliographic Details
Published in:HardwareX 2024-09, Vol.19, p.e00552, Article e00552
Main Authors: Li, Shannon, Gee, Alyssa, Cai, Nathan, Bermudez, Alexandra, Lin, Neil Y.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability to simultaneously measure material mechanics and structure is central for understanding their nonlinear relationship that underlies the mechanical properties of materials, such as hysteresis, strain-stiffening and -softening, and plasticity. This experimental capability is also critical in biomechanics and mechanobiology research, as it enables direct characterizations of the intricate interplay between cellular responses and tissue mechanics. Stretching devices developed over the past few decades, however, do not often allow simultaneous measurements of the structural and mechanical responses of the sample. In this work, we introduce an open-source stretching system that can apply uniaxial strain at a submicron resolution, report the tensile force response of the sample, and be mounted on an inverted microscope for real-time imaging. Our system consists of a pair of stepper-based linear motors that stretch the sample symmetrically, a force transducer that records the sample tensile force, and an optically clear sample holder that allows for high-magnification microscopy. Using polymer samples and cellular specimens, we characterized the motion control accuracy, force measurement robustness, and microscopy compatibility of our stretching system. We envision that this uniaxial stretching system will be a valuable tool for characterizing soft and living materials. [Display omitted]
ISSN:2468-0672
2468-0672
DOI:10.1016/j.ohx.2024.e00552